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Motivation



Memory Safety Vulnerabilities

e MITRE: 3 out of 10 are memory vulnerabilities [MIT19]
e Microsoft: 70% security-related bug fixes [Mil19]
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Memory Safety Vulnerabilities

e MITRE: 3 out of 10 are memory vulnerabilities [MIT19]
e Microsoft: 70% security-related bug fixes [Mil19]

e Entry point for various attacks
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Memory Safety Vulnerabilities

e Logical Memory Safety Vulnerabilities
e Physical Memory Safety Vulnerabilities
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Phyiscal Memory Safety Vulnerabilities

Exposed external memory

Cold-boot [Hal+-08], Bus sniffing [Nur20]
Software-based attacks

Cloud and loT
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Thwarting Phyiscal Memory Safety Vulnerabilities

Confidentiality & Integrity

Memory Encryption

Average runtime overheads between 5% and 109.8 %

Broadly available in Intel and AMD processors
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Logical Memory Safety Vulnerabilities

Memory vulnerabilities exploit a memory bug

Classified in spatial and temporal memory bugs

Temporal error: dereferencing a dangling pointer

Spatial error: out-of-bounds access

Pascal Nasahl — IAIK — Graz University of Technology



Logical Memory Safety Vulnerabilities

e Use the pointer: [Sze+13]

e Modify a data pointer
e Modify code and data
e Modify a code pointer
e Output data
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Thwarting Logical Memory Safety Vulnerabilities

e Data-flow integrity
e DFI, HDFI: Enforcing data-flow graph
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Thwarting Logical Memory Safety Vulnerabilities

e Data-flow integrity
e DFI, HDFI: Enforcing data-flow graph
e Code-pointer integrity

e CPI: Store in safe region
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Thwarting Logical Memory Safety Vulnerabilities

e Data-flow integrity
e DFI, HDFI: Enforcing data-flow graph
e Code-pointer integrity
e CPI: Store in safe region
e Code- and data-pointer integrity
e PARTS: Integrity of all code- and data-pointers
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Memory Safety

e Prevents all spatial and temporal memory errors
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Memory Safety

e Prevents all spatial and temporal memory errors
e Spatial memory safety
e Softbound, Hardbound: Bounds for each object
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Memory Safety

e Prevents all spatial and temporal memory errors
e Spatial memory safety

e Softbound, Hardbound: Bounds for each object
e Temporal memory safety

e Watchdog: Metadata stored in shadow memory
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Memory Safety

Prevents all spatial and temporal memory errors

Spatial memory safety
e Softbound, Hardbound: Bounds for each object

Temporal memory safety

e Watchdog: Metadata stored in shadow memory

Large performance overhead
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Memory Safety

Prevents all spatial and temporal memory errors

Spatial memory safety
e Softbound, Hardbound: Bounds for each object

Temporal memory safety

e Watchdog: Metadata stored in shadow memory

Large performance overhead

Hardware support is needed!
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Memory Coloring

e Lock-and-key approach
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Memory Coloring

e Lock-and-key approach

char *ptr = new char(8];

ptr[2] = ’\

ptr[8] = ....
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Memory Coloring

e Lock-and-key approach

char *ptr = new char(8];

ptr[2] = ’\

/x

ptr[8] = ....

e Memory Allocation: lock object with a distinct color

e Memory Access: access object with the correct color
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Tagged Memory

e Assigning metadata to memory chunks

e Each N-bytes of memory are tagged with a M-bit tag
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Tagged Memory

e Assigning metadata to memory chunks

Each N-bytes of memory are tagged with a M-bit tag

Hardware available: Memory Tagging Extension (MTE) in ARMv8.5

A 4-bit tag for every 16-bytes of memory
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Tagged Memory

e Assigning metadata to memory chunks

Each N-bytes of memory are tagged with a M-bit tag
e Hardware available: Memory Tagging Extension (MTE) in ARMv8.5

A 4-bit tag for every 16-bytes of memory

Tag is transported in the upper, unused bits of the pointer

63 99 56 154 VA SIZ
Address
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Tagged Memory

e Assigning metadata to memory chunks

Each N-bytes of memory are tagged with a M-bit tag
e Hardware available: Memory Tagging Extension (MTE) in ARMv8.5

A 4-bit tag for every 16-bytes of memory

Tag is transported in the upper, unused bits of the pointer

63 99 56 154 VA SIZ
Address

Google’s MemTagSanitizer utilizes MTE for memory coloring
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Tagged Memory Overhead

e Color needs to be stored in memory
e ARM MTE: 3%
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Tagged Memory Overhead

e Color needs to be stored in memory

e ARM MTE: 3%
e Detection probability of 93%
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Tagged Memory Overhead

Color needs to be stored in memory
ARM MTE: 3%
Detection probability of 93%

High detection probability for tag sizes of 16-bits

e Increases memory overhead to 12%
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Tagged Memory Overhead

e Color needs to be stored in memory

e ARM MTE: 3%

e Detection probability of 93%

e High detection probability for tag sizes of 16-bits
e Increases memory overhead to 12%

e Security <> Memory Overhead

e Mainly used for debugging
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CrypTag




CrypTag

e Goal: Enforcing physical and logical memory safety

e Maximize security guarantees and keep overhead at a minimum
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CrypTag

e Goal: Enforcing physical and logical memory safety
e Maximize security guarantees and keep overhead at a minimum

e Combining transparent memory encryption and memory coloring
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e Each memory object is tagged with a color

e Color is transported in upper bits of the pointer
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Each memory object is tagged with a color

Color is transported in upper bits of the pointer

Color tweaks the encryption of the memory object

Each memory object is encrypted with a distinct color

Accessing memory object with correct color decrypts it
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e Each memory object is tagged with a color
e Color is transported in upper bits of the pointer
e Color tweaks the encryption of the memory object
e Each memory object is encrypted with a distinct color
e Accessing memory object with correct color decrypts it
— No color storage overhead
— No memory traffic overhead

— Increase color size
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Color Mismatch

e Memory encryption

e Color mismatch decrypts with wrong tweak
e Security policy S1
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Color Mismatch

e Memory encryption

e Color mismatch decrypts with wrong tweak
e Security policy S1

e Memory encryption and authentication

e Color mismatch triggers an authentication error
e Security policy S2
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Implementation




Hardware Support

e Minimal hardware changes
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Hardware Support

Minimal hardware changes

Instruction to set color in unused upper bits of a pointer

MMU ignores theses bits in address translation

Cache is extended to store the color

CrypTag allows sub-cache line granularity
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Memory Encryption

e Based on a system with transparent memory encryption *M
e Encryption or encryption and authentication _K)
e Tweakable block cipher T TBC
o MEMSEC [Wer+17] ]

e S1: QARMA *C

e S2: ASCON
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Software Support

e Protection of heap, local, and global data
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Software Support

e Protection of heap, local, and global data

e Automatic instrumentation:

e LLVM toolchain for local and global data
e Tiny runtime library for heap allocations

void* __wrap_malloc(size_t size) {
size = roundup (size);
void *ptr = __real_malloc(size);
if (ptr == NULL) return NULL;
return nmstp (ptr);

Pascal Nasahl — IAIK — Graz University of Technology



CrypTag
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Evaluation




Hardware Overhead

e Hardware overhead of less than 93%

e Tag generation and transportation
e Cache overhead
e Between 1.56% and 19.53%
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Runtime Overhead

e SPEC2017: 5.2% and 6.1%
e SciMark2: 3.9% and 4.79%
e MiBench: 1.5% and 4.9%
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Prototype Limitations

e On top of the memory encryption overhead
e MEMSEC: up to 110%
e Commercial solutions [Rob20]: 5% to 26%
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Security Discussion




Security of CrypTag

e CrypTag is a probabilistic scheme

e Large tag sizes enables a high detection probability
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Security of CrypTag

e CrypTag is a probabilistic scheme

e Large tag sizes enables a high detection probability
e Spatial memory safety:

e S1: Pseudorandom value
e S2: Authentication error
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Security of CrypTag

CrypTag is a probabilistic scheme

Large tag sizes enables a high detection probability

Spatial memory safety:

e S1: Pseudorandom value
e S2: Authentication error

Temporal memory safety:

e S1: Pseudorandom value
e S2: Authentication error
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Security of CrypTag

CrypTag is a probabilistic scheme

Large tag sizes enables a high detection probability

Spatial memory safety:

e S1: Pseudorandom value
e S2: Authentication error

Temporal memory safety:

e S1: Pseudorandom value
e S2: Authentication error

Physical memory safety
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Conclusion




Conclusion

Extension to systems already featuring a transparent memory encryption

Memory coloring scheme utilizing transparent memory encryption

Low performance (< 6.2%) and hardware overhead (< 1%)

Larger tag sizes (e.g., 25-bits)

Suitable as a security countermeasure

RISC-V implementation and custom LLVM-based toolchain
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Thank youl!
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