Ty,
CrypTag: Thwarting Physical and Logical

Memory Vulnerabilities using Cryptographically
Colored Memory

Pascal Nasahl, Robert Schilling, Mario Werner, Jan Hoogerbrugge, Marcel Medwed,
Stefan Mangard

AsiaCCS'21, June 7-11, 2021

IAIK — Graz University of Technology

Motivation

Memory Safety Vulnerabilities

e MITRE: 3 out of 10 are memory vulnerabilities [MIT19]
e Microsoft: 70% security-related bug fixes [Mil19]

Pascal Nasahl — IAIK — Graz University of Technology

Memory Safety Vulnerabilities

e MITRE: 3 out of 10 are memory vulnerabilities [MIT19]
e Microsoft: 70% security-related bug fixes [Mil19]

e Entry point for various attacks

Pascal Nasahl — IAIK — Graz University of Technology

Memory Safety Vulnerabilities

e Logical Memory Safety Vulnerabilities
e Physical Memory Safety Vulnerabilities

Pascal Nasahl — IAIK — Graz University of Technology

Phyiscal Memory Safety Vulnerabilities

Exposed external memory

Cold-boot [Hal+-08], Bus sniffing [Nur20]
Software-based attacks

Cloud and loT

Pascal Nasahl — IAIK — Graz University of Technology

Thwarting Phyiscal Memory Safety Vulnerabilities

Confidentiality & Integrity

Memory Encryption

Average runtime overheads between 5% and 109.8 %

Broadly available in Intel and AMD processors

n Pascal Nasahl — IAIK — Graz University of Technology

Logical Memory Safety Vulnerabilities

Memory vulnerabilities exploit a memory bug

Classified in spatial and temporal memory bugs

Temporal error: dereferencing a dangling pointer

Spatial error: out-of-bounds access

Pascal Nasahl — IAIK — Graz University of Technology

Logical Memory Safety Vulnerabilities

e Use the pointer: [Sze+13]

e Modify a data pointer
e Modify code and data
e Modify a code pointer
e Output data

n Pascal Nasahl — IAIK — Graz University of Technology

Thwarting Logical Memory Safety Vulnerabilities

e Data-flow integrity
e DFI, HDFI: Enforcing data-flow graph

Pascal Nasahl — IAIK — Graz University of Technology

Thwarting Logical Memory Safety Vulnerabilities

e Data-flow integrity
e DFI, HDFI: Enforcing data-flow graph
e Code-pointer integrity

e CPI: Store in safe region

Pascal Nasahl — IAIK — Graz University of Technology

Thwarting Logical Memory Safety Vulnerabilities

e Data-flow integrity
e DFI, HDFI: Enforcing data-flow graph
e Code-pointer integrity
e CPI: Store in safe region
e Code- and data-pointer integrity
e PARTS: Integrity of all code- and data-pointers

Pascal Nasahl — IAIK — Graz University of Technology

Memory Safety

e Prevents all spatial and temporal memory errors

n Pascal Nasahl — IAIK — Graz University of Technology

Memory Safety

e Prevents all spatial and temporal memory errors
e Spatial memory safety
e Softbound, Hardbound: Bounds for each object

n Pascal Nasahl — IAIK — Graz University of Technology

Memory Safety

e Prevents all spatial and temporal memory errors
e Spatial memory safety

e Softbound, Hardbound: Bounds for each object
e Temporal memory safety

e Watchdog: Metadata stored in shadow memory

H Pascal Nasahl — IAIK — Graz University of Technology

Memory Safety

Prevents all spatial and temporal memory errors

Spatial memory safety
e Softbound, Hardbound: Bounds for each object

Temporal memory safety

e Watchdog: Metadata stored in shadow memory

Large performance overhead

H Pascal Nasahl — IAIK — Graz University of Technology

Memory Safety

Prevents all spatial and temporal memory errors

Spatial memory safety
e Softbound, Hardbound: Bounds for each object

Temporal memory safety

e Watchdog: Metadata stored in shadow memory

Large performance overhead

Hardware support is needed!

H Pascal Nasahl — IAIK — Graz University of Technology

Memory Coloring

e Lock-and-key approach

n Pascal Nasahl — IAIK — Graz University of Technology

Memory Coloring

e Lock-and-key approach

char *ptr = new char(8];

ptr[2] = ’\

ptr[8] =

n Pascal Nasahl — IAIK — Graz University of Technology

Memory Coloring

e Lock-and-key approach

char *ptr = new char(8];

ptr[2] = ’\

/x

ptr[8] =

e Memory Allocation: lock object with a distinct color

e Memory Access: access object with the correct color

n Pascal Nasahl — IAIK — Graz University of Technology

Tagged Memory

e Assigning metadata to memory chunks

e Each N-bytes of memory are tagged with a M-bit tag

Pascal Nasahl — IAIK — Graz University of Technology

Tagged Memory

e Assigning metadata to memory chunks

Each N-bytes of memory are tagged with a M-bit tag

Hardware available: Memory Tagging Extension (MTE) in ARMv8.5

A 4-bit tag for every 16-bytes of memory

Pascal Nasahl — IAIK — Graz University of Technology

Tagged Memory

e Assigning metadata to memory chunks

Each N-bytes of memory are tagged with a M-bit tag
e Hardware available: Memory Tagging Extension (MTE) in ARMv8.5

A 4-bit tag for every 16-bytes of memory

Tag is transported in the upper, unused bits of the pointer

63 99 56 154 VA SIZ
Address

Pascal Nasahl — IAIK — Graz University of Technology

Tagged Memory

e Assigning metadata to memory chunks

Each N-bytes of memory are tagged with a M-bit tag
e Hardware available: Memory Tagging Extension (MTE) in ARMv8.5

A 4-bit tag for every 16-bytes of memory

Tag is transported in the upper, unused bits of the pointer

63 99 56 154 VA SIZ
Address

Google’s MemTagSanitizer utilizes MTE for memory coloring

Pascal Nasahl — IAIK — Graz University of Technology

Tagged Memory Overhead

e Color needs to be stored in memory
e ARM MTE: 3%

Pascal Nasahl — IAIK — Graz University of Technology

Tagged Memory Overhead

e Color needs to be stored in memory

e ARM MTE: 3%
e Detection probability of 93%

Pascal Nasahl — IAIK — Graz University of Technology

Tagged Memory Overhead

Color needs to be stored in memory
ARM MTE: 3%
Detection probability of 93%

High detection probability for tag sizes of 16-bits

e Increases memory overhead to 12%

Pascal Nasahl — IAIK — Graz University of Technology

Tagged Memory Overhead

e Color needs to be stored in memory

e ARM MTE: 3%

e Detection probability of 93%

e High detection probability for tag sizes of 16-bits
e Increases memory overhead to 12%

e Security <> Memory Overhead

e Mainly used for debugging

Pascal Nasahl — IAIK — Graz University of Technology

CrypTag

CrypTag

e Goal: Enforcing physical and logical memory safety

e Maximize security guarantees and keep overhead at a minimum

Pascal Nasahl — IAIK — Graz University of Technology

CrypTag

e Goal: Enforcing physical and logical memory safety
e Maximize security guarantees and keep overhead at a minimum

e Combining transparent memory encryption and memory coloring

Pascal Nasahl — IAIK — Graz University of Technology

e Each memory object is tagged with a color

e Color is transported in upper bits of the pointer

Pascal Nasahl — IAIK — Graz University of Technology

Each memory object is tagged with a color

Color is transported in upper bits of the pointer

Color tweaks the encryption of the memory object

Each memory object is encrypted with a distinct color

Accessing memory object with correct color decrypts it

Pascal Nasahl — IAIK — Graz University of Technology

e Each memory object is tagged with a color
e Color is transported in upper bits of the pointer
e Color tweaks the encryption of the memory object
e Each memory object is encrypted with a distinct color
e Accessing memory object with correct color decrypts it
— No color storage overhead
— No memory traffic overhead

— Increase color size

Pascal Nasahl — IAIK — Graz University of Technology

Color Mismatch

e Memory encryption

e Color mismatch decrypts with wrong tweak
e Security policy S1

Pascal Nasahl — IAIK — Graz University of Technology

Color Mismatch

e Memory encryption

e Color mismatch decrypts with wrong tweak
e Security policy S1

e Memory encryption and authentication

e Color mismatch triggers an authentication error
e Security policy S2

Pascal Nasahl — IAIK — Graz University of Technology

Implementation

Hardware Support

e Minimal hardware changes

Pascal Nasahl — IAIK — Graz University of Technology

Hardware Support

Minimal hardware changes

Instruction to set color in unused upper bits of a pointer

MMU ignores theses bits in address translation

Cache is extended to store the color

CrypTag allows sub-cache line granularity

Pascal Nasahl — IAIK — Graz University of Technology

Memory Encryption

e Based on a system with transparent memory encryption *M
e Encryption or encryption and authentication _K)
e Tweakable block cipher T TBC
o MEMSEC [Wer+17]]

e S1: QARMA *C

e S2: ASCON

Pascal Nasahl — IAIK — Graz University of Technology

Software Support

e Protection of heap, local, and global data

Pascal Nasahl — IAIK — Graz University of Technology

Software Support

e Protection of heap, local, and global data

e Automatic instrumentation:

e LLVM toolchain for local and global data
e Tiny runtime library for heap allocations

void* __wrap_malloc(size_t size) {
size = roundup (size);
void *ptr = __real_malloc(size);
if (ptr == NULL) return NULL;
return nmstp (ptr);

Pascal Nasahl — IAIK — Graz University of Technology

CrypTag

PR) C hlp ----- Color
*ptr @ @ MMU — Address

> ~® == Data

Dl Core <y 1 y — - - Encrypted
o @ Data
O L1D —
Mem -
- A ® Enc > Memory
A = <-----> Controller
(Bus e — T

Pascal Nasahl — IAIK — Graz University of Technology

Evaluation

Hardware Overhead

e Hardware overhead of less than 93%

e Tag generation and transportation
e Cache overhead
e Between 1.56% and 19.53%

Pascal Nasahl — IAIK — Graz University of Technology

Runtime Overhead

e SPEC2017: 5.2% and 6.1%
e SciMark2: 3.9% and 4.79%
e MiBench: 1.5% and 4.9%

250

N BN Base QARMA
Q5 EEE 52 QARMA
200 g = B Base ASCON

Bl S1 ASCON

Runtime Overhead [%]

sgcc deepsjeng leela namd imagick

Pascal Nasahl — IAIK — Graz University of Technology

Prototype Limitations

e On top of the memory encryption overhead
e MEMSEC: up to 110%
e Commercial solutions [Rob20]: 5% to 26%

1500 4 —&— Base
—&— Base ASCON
—8— Base QARMA
«» 1000 4
c
500 4

103 1072 1071 100 10!
mb

Pascal Nasahl — IAIK — Graz University of Technology

Security Discussion

Security of CrypTag

e CrypTag is a probabilistic scheme

e Large tag sizes enables a high detection probability

Pascal Nasahl — IAIK — Graz University of Technology

Security of CrypTag

e CrypTag is a probabilistic scheme

e Large tag sizes enables a high detection probability
e Spatial memory safety:

e S1: Pseudorandom value
e S2: Authentication error

Pascal Nasahl — IAIK — Graz University of Technology

Security of CrypTag

CrypTag is a probabilistic scheme

Large tag sizes enables a high detection probability

Spatial memory safety:

e S1: Pseudorandom value
e S2: Authentication error

Temporal memory safety:

e S1: Pseudorandom value
e S2: Authentication error

Pascal Nasahl — IAIK — Graz University of Technology

Security of CrypTag

CrypTag is a probabilistic scheme

Large tag sizes enables a high detection probability

Spatial memory safety:

e S1: Pseudorandom value
e S2: Authentication error

Temporal memory safety:

e S1: Pseudorandom value
e S2: Authentication error

Physical memory safety

Pascal Nasahl — IAIK — Graz University of Technology

Conclusion

Conclusion

Extension to systems already featuring a transparent memory encryption

Memory coloring scheme utilizing transparent memory encryption

Low performance (< 6.2%) and hardware overhead (< 1%)

Larger tag sizes (e.g., 25-bits)

Suitable as a security countermeasure

RISC-V implementation and custom LLVM-based toolchain

Pascal Nasahl — IAIK — Graz University of Technology

Thank youl!

Ty,
CrypTag: Thwarting Physical and Logical

Memory Vulnerabilities using Cryptographically
Colored Memory

Pascal Nasahl, Robert Schilling, Mario Werner, Jan Hoogerbrugge, Marcel Medwed,
Stefan Mangard

AsiaCCS'21, June 7-11, 2021

IAIK — Graz University of Technology

References

@ J. A. Halderman, S. D. Schoen, N. Heninger, W. Clarkson, W. Paul,
J. A. Calandrino, A. J. Feldman, J. Appelbaum, and E. W. Felten. Lest We
Remember: Cold Boot Attacks on Encryption Keys. In: USENIX Security
Symposium. 2008.

M. Miller. Trends, Challanges, and Strategic Shifts in the Software Vulnerability
Mitigation Landscape. In: BlueHat IL (2019).

MITRE. CWE Top 25 Most Dangerous Software Errors. 2019.
H. Nurmi. Sniff, there leaks my BitLocker key. 2020.

Y T T R P

A. Roberto-Maria. Memory Protection for the ARM Architecture. 2020.

PZ¥ Pascal Nasahl, Robert Schilling, Mario Werner, Jan Hoogerbrugge, Marcel Medwed, Stefan Mangard — IAIK — Graz U

http://www.usenix.org/events/sec08/tech/full_papers/halderman/halderman.pdf
http://www.usenix.org/events/sec08/tech/full_papers/halderman/halderman.pdf
http://cwe.mitre.org/top25/archive/2019/2019_cwe_top25.html
https://labs.f-secure.com/blog/sniff-there-leaks-my-bitlocker-key/
https://rwc.iacr.org/2020/slides/Avanzi.pdf

@ L. Szekeres, M. Payer, T. Wei, and D. Song. SoK: Eternal War in Memory. In:
IEEE Symposium on Security and Privacy — S&P. 2013.

@ M. Werner, T. Unterluggauer, R. Schilling, D. Schaffenrath, and S. Mangard.
Transparent memory encryption and authentication. In: Field Programmable Logic
and Applications — FPL. 2017.

YAl Pascal Nasahl, Robert Schilling, Mario Werner, Jan Hoogerbrugge, Marcel Medwed, Stefan Mangard — IAIK — Graz U

https://doi.org/10.1109/SP.2013.13
https://doi.org/10.23919/FPL.2017.8056797

	Motivation
	CrypTag
	Implementation
	Evaluation
	Security Discussion
	Conclusion
	References

