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Motivation



Memory Safety Vulnerabilities

• MITRE: 3 out of 10 are memory vulnerabilities [MIT19]

• Microsoft: 70% security-related bug fixes [Mil19]

• Entry point for various attacks
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Memory Safety Vulnerabilities

• Logical Memory Safety Vulnerabilities

• Physical Memory Safety Vulnerabilities
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Phyiscal Memory Safety Vulnerabilities

• Exposed external memory

• Cold-boot [Hal+08], Bus sniffing [Nur20]

• Software-based attacks

• Cloud and IoT
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Thwarting Phyiscal Memory Safety Vulnerabilities

• Confidentiality & Integrity

• Memory Encryption

• Average runtime overheads between 5 % and 109.8 %

• Broadly available in Intel and AMD processors
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Logical Memory Safety Vulnerabilities

• Memory vulnerabilities exploit a memory bug

• Classified in spatial and temporal memory bugs

• Temporal error: dereferencing a dangling pointer

• Spatial error: out-of-bounds access
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Logical Memory Safety Vulnerabilities

• Use the pointer: [Sze+13]

• Modify a data pointer

• Modify code and data

• Modify a code pointer

• Output data
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Thwarting Logical Memory Safety Vulnerabilities

• Data-flow integrity

• DFI, HDFI: Enforcing data-flow graph

• Code-pointer integrity

• CPI: Store in safe region

• Code- and data-pointer integrity

• PARTS: Integrity of all code- and data-pointers
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Memory Safety

• Prevents all spatial and temporal memory errors

• Spatial memory safety

• Softbound, Hardbound: Bounds for each object

• Temporal memory safety

• Watchdog: Metadata stored in shadow memory

• Large performance overhead

• Hardware support is needed!
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Memory Coloring

• Lock-and-key approach

• Memory Allocation: lock object with a distinct color

• Memory Access: access object with the correct color
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char *ptr = new char[8];

ptr[2] = ....

ptr[8] = ....
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Tagged Memory

• Assigning metadata to memory chunks

• Each N-bytes of memory are tagged with a M-bit tag

• Hardware available: Memory Tagging Extension (MTE) in ARMv8.5

• A 4-bit tag for every 16-bytes of memory

• Tag is transported in the upper, unused bits of the pointer

• Google’s MemTagSanitizer utilizes MTE for memory coloring
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Tagged Memory Overhead

• Color needs to be stored in memory

• ARM MTE: 3%

• Detection probability of 93%

• High detection probability for tag sizes of 16-bits

• Increases memory overhead to 12%

• Security ↔ Memory Overhead

• Mainly used for debugging
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CrypTag



CrypTag

• Goal: Enforcing physical and logical memory safety

• Maximize security guarantees and keep overhead at a minimum

• Combining transparent memory encryption and memory coloring
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Concept

• Each memory object is tagged with a color

• Color is transported in upper bits of the pointer

• Color tweaks the encryption of the memory object

• Each memory object is encrypted with a distinct color

• Accessing memory object with correct color decrypts it

→ No color storage overhead

→ No memory traffic overhead

→ Increase color size
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Color Mismatch

• Memory encryption

• Color mismatch decrypts with wrong tweak

• Security policy S1

• Memory encryption and authentication

• Color mismatch triggers an authentication error

• Security policy S2
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Implementation



Hardware Support

• Minimal hardware changes

• Instruction to set color in unused upper bits of a pointer

• MMU ignores theses bits in address translation

• Cache is extended to store the color

• CrypTag allows sub-cache line granularity
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Memory Encryption

• Based on a system with transparent memory encryption

• Encryption or encryption and authentication

• Tweakable block cipher

• MEMSEC [Wer+17]

• S1: QARMA

• S2: ASCON

TBC

M

C

K

T
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Software Support

• Protection of heap, local, and global data

• Automatic instrumentation:

• LLVM toolchain for local and global data

• Tiny runtime library for heap allocations
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CrypTag
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Evaluation



Hardware Overhead

• Hardware overhead of less than 93%

• Tag generation and transportation

• Cache overhead

• Between 1.56% and 19.53%
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Runtime Overhead

• SPEC2017: 5.2% and 6.1%

• SciMark2: 3.9% and 4.79%

• MiBench: 1.5% and 4.9%
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Prototype Limitations

• On top of the memory encryption overhead

• MEMSEC: up to 110%

• Commercial solutions [Rob20]: 5% to 26%
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Security Discussion



Security of CrypTag

• CrypTag is a probabilistic scheme

• Large tag sizes enables a high detection probability

• Spatial memory safety:

• S1: Pseudorandom value

• S2: Authentication error

• Temporal memory safety:

• S1: Pseudorandom value

• S2: Authentication error

• Physical memory safety
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Conclusion



Conclusion

• Extension to systems already featuring a transparent memory encryption

• Memory coloring scheme utilizing transparent memory encryption

• Low performance (< 6.2%) and hardware overhead (< 1%)

• Larger tag sizes (e.g., 25-bits)

• Suitable as a security countermeasure

• RISC-V implementation and custom LLVM-based toolchain

23 Pascal Nasahl — IAIK – Graz University of Technology



Thank you!
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