
CrypTag: Thwarting Physical and Logical

Memory Vulnerabilities using Cryptographically

Colored Memory

Pascal Nasahl, Robert Schilling, Mario Werner, Jan Hoogerbrugge, Marcel Medwed,

Stefan Mangard

AsiaCCS’21, June 7-11, 2021

IAIK – Graz University of Technology

Motivation

Memory Safety Vulnerabilities

• MITRE: 3 out of 10 are memory vulnerabilities [MIT19]

• Microsoft: 70% security-related bug fixes [Mil19]

• Entry point for various attacks

1 Pascal Nasahl — IAIK – Graz University of Technology

Memory Safety Vulnerabilities

• MITRE: 3 out of 10 are memory vulnerabilities [MIT19]

• Microsoft: 70% security-related bug fixes [Mil19]

• Entry point for various attacks

1 Pascal Nasahl — IAIK – Graz University of Technology

Memory Safety Vulnerabilities

• Logical Memory Safety Vulnerabilities

• Physical Memory Safety Vulnerabilities

2 Pascal Nasahl — IAIK – Graz University of Technology

Phyiscal Memory Safety Vulnerabilities

• Exposed external memory

• Cold-boot [Hal+08], Bus sniffing [Nur20]

• Software-based attacks

• Cloud and IoT

3 Pascal Nasahl — IAIK – Graz University of Technology

Thwarting Phyiscal Memory Safety Vulnerabilities

• Confidentiality & Integrity

• Memory Encryption

• Average runtime overheads between 5 % and 109.8 %

• Broadly available in Intel and AMD processors

4 Pascal Nasahl — IAIK – Graz University of Technology

Logical Memory Safety Vulnerabilities

• Memory vulnerabilities exploit a memory bug

• Classified in spatial and temporal memory bugs

• Temporal error: dereferencing a dangling pointer

• Spatial error: out-of-bounds access

5 Pascal Nasahl — IAIK – Graz University of Technology

Logical Memory Safety Vulnerabilities

• Use the pointer: [Sze+13]

• Modify a data pointer

• Modify code and data

• Modify a code pointer

• Output data

6 Pascal Nasahl — IAIK – Graz University of Technology

Thwarting Logical Memory Safety Vulnerabilities

• Data-flow integrity

• DFI, HDFI: Enforcing data-flow graph

• Code-pointer integrity

• CPI: Store in safe region

• Code- and data-pointer integrity

• PARTS: Integrity of all code- and data-pointers

7 Pascal Nasahl — IAIK – Graz University of Technology

Thwarting Logical Memory Safety Vulnerabilities

• Data-flow integrity

• DFI, HDFI: Enforcing data-flow graph

• Code-pointer integrity

• CPI: Store in safe region

• Code- and data-pointer integrity

• PARTS: Integrity of all code- and data-pointers

7 Pascal Nasahl — IAIK – Graz University of Technology

Thwarting Logical Memory Safety Vulnerabilities

• Data-flow integrity

• DFI, HDFI: Enforcing data-flow graph

• Code-pointer integrity

• CPI: Store in safe region

• Code- and data-pointer integrity

• PARTS: Integrity of all code- and data-pointers

7 Pascal Nasahl — IAIK – Graz University of Technology

Memory Safety

• Prevents all spatial and temporal memory errors

• Spatial memory safety

• Softbound, Hardbound: Bounds for each object

• Temporal memory safety

• Watchdog: Metadata stored in shadow memory

• Large performance overhead

• Hardware support is needed!

8 Pascal Nasahl — IAIK – Graz University of Technology

Memory Safety

• Prevents all spatial and temporal memory errors

• Spatial memory safety

• Softbound, Hardbound: Bounds for each object

• Temporal memory safety

• Watchdog: Metadata stored in shadow memory

• Large performance overhead

• Hardware support is needed!

8 Pascal Nasahl — IAIK – Graz University of Technology

Memory Safety

• Prevents all spatial and temporal memory errors

• Spatial memory safety

• Softbound, Hardbound: Bounds for each object

• Temporal memory safety

• Watchdog: Metadata stored in shadow memory

• Large performance overhead

• Hardware support is needed!

8 Pascal Nasahl — IAIK – Graz University of Technology

Memory Safety

• Prevents all spatial and temporal memory errors

• Spatial memory safety

• Softbound, Hardbound: Bounds for each object

• Temporal memory safety

• Watchdog: Metadata stored in shadow memory

• Large performance overhead

• Hardware support is needed!

8 Pascal Nasahl — IAIK – Graz University of Technology

Memory Safety

• Prevents all spatial and temporal memory errors

• Spatial memory safety

• Softbound, Hardbound: Bounds for each object

• Temporal memory safety

• Watchdog: Metadata stored in shadow memory

• Large performance overhead

• Hardware support is needed!

8 Pascal Nasahl — IAIK – Graz University of Technology

Memory Coloring

• Lock-and-key approach

• Memory Allocation: lock object with a distinct color

• Memory Access: access object with the correct color

9 Pascal Nasahl — IAIK – Graz University of Technology

Memory Coloring

• Lock-and-key approach

char *ptr = new char[8];

ptr[2] =

ptr[8] =

• Memory Allocation: lock object with a distinct color

• Memory Access: access object with the correct color

9 Pascal Nasahl — IAIK – Graz University of Technology

Memory Coloring

• Lock-and-key approach

char *ptr = new char[8];

ptr[2] =

ptr[8] =

• Memory Allocation: lock object with a distinct color

• Memory Access: access object with the correct color

9 Pascal Nasahl — IAIK – Graz University of Technology

Tagged Memory

• Assigning metadata to memory chunks

• Each N-bytes of memory are tagged with a M-bit tag

• Hardware available: Memory Tagging Extension (MTE) in ARMv8.5

• A 4-bit tag for every 16-bytes of memory

• Tag is transported in the upper, unused bits of the pointer

• Google’s MemTagSanitizer utilizes MTE for memory coloring

10 Pascal Nasahl — IAIK – Graz University of Technology

Tagged Memory

• Assigning metadata to memory chunks

• Each N-bytes of memory are tagged with a M-bit tag

• Hardware available: Memory Tagging Extension (MTE) in ARMv8.5

• A 4-bit tag for every 16-bytes of memory

• Tag is transported in the upper, unused bits of the pointer

63 59 56 VA_SIZE

AddressPACTag
54

• Google’s MemTagSanitizer utilizes MTE for memory coloring

10 Pascal Nasahl — IAIK – Graz University of Technology

Tagged Memory

• Assigning metadata to memory chunks

• Each N-bytes of memory are tagged with a M-bit tag

• Hardware available: Memory Tagging Extension (MTE) in ARMv8.5

• A 4-bit tag for every 16-bytes of memory

• Tag is transported in the upper, unused bits of the pointer

63 59 56 VA_SIZE

AddressPACTag
54

• Google’s MemTagSanitizer utilizes MTE for memory coloring

10 Pascal Nasahl — IAIK – Graz University of Technology

Tagged Memory

• Assigning metadata to memory chunks

• Each N-bytes of memory are tagged with a M-bit tag

• Hardware available: Memory Tagging Extension (MTE) in ARMv8.5

• A 4-bit tag for every 16-bytes of memory

• Tag is transported in the upper, unused bits of the pointer

63 59 56 VA_SIZE

AddressPACTag
54

• Google’s MemTagSanitizer utilizes MTE for memory coloring

10 Pascal Nasahl — IAIK – Graz University of Technology

Tagged Memory Overhead

• Color needs to be stored in memory

• ARM MTE: 3%

• Detection probability of 93%

• High detection probability for tag sizes of 16-bits

• Increases memory overhead to 12%

• Security ↔ Memory Overhead

• Mainly used for debugging

11 Pascal Nasahl — IAIK – Graz University of Technology

Tagged Memory Overhead

• Color needs to be stored in memory

• ARM MTE: 3%

• Detection probability of 93%

• High detection probability for tag sizes of 16-bits

• Increases memory overhead to 12%

• Security ↔ Memory Overhead

• Mainly used for debugging

11 Pascal Nasahl — IAIK – Graz University of Technology

Tagged Memory Overhead

• Color needs to be stored in memory

• ARM MTE: 3%

• Detection probability of 93%

• High detection probability for tag sizes of 16-bits

• Increases memory overhead to 12%

• Security ↔ Memory Overhead

• Mainly used for debugging

11 Pascal Nasahl — IAIK – Graz University of Technology

Tagged Memory Overhead

• Color needs to be stored in memory

• ARM MTE: 3%

• Detection probability of 93%

• High detection probability for tag sizes of 16-bits

• Increases memory overhead to 12%

• Security ↔ Memory Overhead

• Mainly used for debugging

11 Pascal Nasahl — IAIK – Graz University of Technology

CrypTag

CrypTag

• Goal: Enforcing physical and logical memory safety

• Maximize security guarantees and keep overhead at a minimum

• Combining transparent memory encryption and memory coloring

12 Pascal Nasahl — IAIK – Graz University of Technology

CrypTag

• Goal: Enforcing physical and logical memory safety

• Maximize security guarantees and keep overhead at a minimum

• Combining transparent memory encryption and memory coloring

12 Pascal Nasahl — IAIK – Graz University of Technology

Concept

• Each memory object is tagged with a color

• Color is transported in upper bits of the pointer

• Color tweaks the encryption of the memory object

• Each memory object is encrypted with a distinct color

• Accessing memory object with correct color decrypts it

→ No color storage overhead

→ No memory traffic overhead

→ Increase color size

13 Pascal Nasahl — IAIK – Graz University of Technology

Concept

• Each memory object is tagged with a color

• Color is transported in upper bits of the pointer

• Color tweaks the encryption of the memory object

• Each memory object is encrypted with a distinct color

• Accessing memory object with correct color decrypts it

→ No color storage overhead

→ No memory traffic overhead

→ Increase color size

13 Pascal Nasahl — IAIK – Graz University of Technology

Concept

• Each memory object is tagged with a color

• Color is transported in upper bits of the pointer

• Color tweaks the encryption of the memory object

• Each memory object is encrypted with a distinct color

• Accessing memory object with correct color decrypts it

→ No color storage overhead

→ No memory traffic overhead

→ Increase color size

13 Pascal Nasahl — IAIK – Graz University of Technology

Color Mismatch

• Memory encryption

• Color mismatch decrypts with wrong tweak

• Security policy S1

• Memory encryption and authentication

• Color mismatch triggers an authentication error

• Security policy S2

14 Pascal Nasahl — IAIK – Graz University of Technology

Color Mismatch

• Memory encryption

• Color mismatch decrypts with wrong tweak

• Security policy S1

• Memory encryption and authentication

• Color mismatch triggers an authentication error

• Security policy S2

14 Pascal Nasahl — IAIK – Graz University of Technology

Implementation

Hardware Support

• Minimal hardware changes

• Instruction to set color in unused upper bits of a pointer

• MMU ignores theses bits in address translation

• Cache is extended to store the color

• CrypTag allows sub-cache line granularity

15 Pascal Nasahl — IAIK – Graz University of Technology

Hardware Support

• Minimal hardware changes

• Instruction to set color in unused upper bits of a pointer

• MMU ignores theses bits in address translation

• Cache is extended to store the color

• CrypTag allows sub-cache line granularity

15 Pascal Nasahl — IAIK – Graz University of Technology

Memory Encryption

• Based on a system with transparent memory encryption

• Encryption or encryption and authentication

• Tweakable block cipher

• MEMSEC [Wer+17]

• S1: QARMA

• S2: ASCON

TBC

M

C

K

T

16 Pascal Nasahl — IAIK – Graz University of Technology

Software Support

• Protection of heap, local, and global data

• Automatic instrumentation:

• LLVM toolchain for local and global data

• Tiny runtime library for heap allocations

17 Pascal Nasahl — IAIK – Graz University of Technology

Software Support

• Protection of heap, local, and global data

• Automatic instrumentation:

• LLVM toolchain for local and global data

• Tiny runtime library for heap allocations

17 Pascal Nasahl — IAIK – Graz University of Technology

CrypTag

Mem
Enc

C
P
U

L1D

Core

*ptr

Bus

Memory
Controller

Color
Address
Data
Encrypted
Data

Chip
MMU

4

5

3
21

18 Pascal Nasahl — IAIK – Graz University of Technology

Evaluation

Hardware Overhead

• Hardware overhead of less than 93%

• Tag generation and transportation

• Cache overhead

• Between 1.56% and 19.53%

19 Pascal Nasahl — IAIK – Graz University of Technology

Runtime Overhead

• SPEC2017: 5.2% and 6.1%

• SciMark2: 3.9% and 4.79%

• MiBench: 1.5% and 4.9%

sgcc deepsjeng leela namd imagick
0

50

100

150

200

250
Ru

nt
im

e
Ov

er
he

ad
 [%

]

10
6.

24

44
.8

7 66
.5

1

53
.2

8

23
.5

3

11
1.

35

47
.0

9 72
.7

8

53
.8

8

24
.8

6

18
6.

25

95
.2

8 11
6.

21

93
.4

2

57
.6

4

19
5.

17

98
.6

3 12
4.

79

98
.8

9

62
.8

9

Base QARMA
S2 QARMA
Base ASCON
S1 ASCON

20 Pascal Nasahl — IAIK – Graz University of Technology

Prototype Limitations

• On top of the memory encryption overhead

• MEMSEC: up to 110%

• Commercial solutions [Rob20]: 5% to 26%

10−3 10−2 10−1 100 101

mb

500

1000

1500

ns
Base
Base ASCON
Base QARMA

21 Pascal Nasahl — IAIK – Graz University of Technology

Security Discussion

Security of CrypTag

• CrypTag is a probabilistic scheme

• Large tag sizes enables a high detection probability

• Spatial memory safety:

• S1: Pseudorandom value

• S2: Authentication error

• Temporal memory safety:

• S1: Pseudorandom value

• S2: Authentication error

• Physical memory safety

22 Pascal Nasahl — IAIK – Graz University of Technology

Security of CrypTag

• CrypTag is a probabilistic scheme

• Large tag sizes enables a high detection probability

• Spatial memory safety:

• S1: Pseudorandom value

• S2: Authentication error

• Temporal memory safety:

• S1: Pseudorandom value

• S2: Authentication error

• Physical memory safety

22 Pascal Nasahl — IAIK – Graz University of Technology

Security of CrypTag

• CrypTag is a probabilistic scheme

• Large tag sizes enables a high detection probability

• Spatial memory safety:

• S1: Pseudorandom value

• S2: Authentication error

• Temporal memory safety:

• S1: Pseudorandom value

• S2: Authentication error

• Physical memory safety

22 Pascal Nasahl — IAIK – Graz University of Technology

Security of CrypTag

• CrypTag is a probabilistic scheme

• Large tag sizes enables a high detection probability

• Spatial memory safety:

• S1: Pseudorandom value

• S2: Authentication error

• Temporal memory safety:

• S1: Pseudorandom value

• S2: Authentication error

• Physical memory safety

22 Pascal Nasahl — IAIK – Graz University of Technology

Conclusion

Conclusion

• Extension to systems already featuring a transparent memory encryption

• Memory coloring scheme utilizing transparent memory encryption

• Low performance (< 6.2%) and hardware overhead (< 1%)

• Larger tag sizes (e.g., 25-bits)

• Suitable as a security countermeasure

• RISC-V implementation and custom LLVM-based toolchain

23 Pascal Nasahl — IAIK – Graz University of Technology

Thank you!

CrypTag: Thwarting Physical and Logical

Memory Vulnerabilities using Cryptographically

Colored Memory

Pascal Nasahl, Robert Schilling, Mario Werner, Jan Hoogerbrugge, Marcel Medwed,

Stefan Mangard

AsiaCCS’21, June 7-11, 2021

IAIK – Graz University of Technology

References

J. A. Halderman, S. D. Schoen, N. Heninger, W. Clarkson, W. Paul,

J. A. Calandrino, A. J. Feldman, J. Appelbaum, and E. W. Felten. Lest We

Remember: Cold Boot Attacks on Encryption Keys. In: USENIX Security

Symposium. 2008.

M. Miller. Trends, Challanges, and Strategic Shifts in the Software Vulnerability

Mitigation Landscape. In: BlueHat IL (2019).

MITRE. CWE Top 25 Most Dangerous Software Errors. 2019.

H. Nurmi. Sniff, there leaks my BitLocker key. 2020.

A. Roberto-Maria. Memory Protection for the ARM Architecture. 2020.

24 Pascal Nasahl, Robert Schilling, Mario Werner, Jan Hoogerbrugge, Marcel Medwed, Stefan Mangard — IAIK – Graz University of Technology

http://www.usenix.org/events/sec08/tech/full_papers/halderman/halderman.pdf
http://www.usenix.org/events/sec08/tech/full_papers/halderman/halderman.pdf
http://cwe.mitre.org/top25/archive/2019/2019_cwe_top25.html
https://labs.f-secure.com/blog/sniff-there-leaks-my-bitlocker-key/
https://rwc.iacr.org/2020/slides/Avanzi.pdf

L. Szekeres, M. Payer, T. Wei, and D. Song. SoK: Eternal War in Memory. In:

IEEE Symposium on Security and Privacy – S&P. 2013.

M. Werner, T. Unterluggauer, R. Schilling, D. Schaffenrath, and S. Mangard.

Transparent memory encryption and authentication. In: Field Programmable Logic

and Applications – FPL. 2017.

25 Pascal Nasahl, Robert Schilling, Mario Werner, Jan Hoogerbrugge, Marcel Medwed, Stefan Mangard — IAIK – Graz University of Technology

https://doi.org/10.1109/SP.2013.13
https://doi.org/10.23919/FPL.2017.8056797

	Motivation
	CrypTag
	Implementation
	Evaluation
	Security Discussion
	Conclusion
	References

