
Mario Werner

System Architectures and Techniques
for Efficient, Secure, and Trusted Code

Execution

DOCTORAL THESIS
to achieve the university degree of

Doktor der technischen Wissenschaften
submitted to

Graz University of Technology

Supervisor
Prof. Stefan Mangard (TU Graz)

Assessors
Prof. Stefan Mangard (TU Graz)

Prof. Ingrid Verbauwhede (KU Leuven)

Institute for Applied Information Processing and Communications (IAIK)
Graz University of Technology

Graz, April 2020

Abstract

Contemporary devices rely on an increasing amount of software to implement
their respective functionality. Hence, the software including its correct execution
are key assets in modern systems. A huge portfolio of attack techniques, ranging
from remotely mountable software attacks to local attacks that utilize physical
access, endanger these assets and need to be mitigated. However, countermeasures
deployed in current systems mainly focus on the prevention of pure software
attacks. Attack types that (locally or remotely) exploit physical properties of a
device are often neglected although they are applicable to mobile devices and
threaten software in the emerging cloud computing, IoT, and Industry 4.0 contexts.
The exploitation of side-channels (e.g., timing, power) and fault injection are
two prominent examples of physical attacks. Unfortunately, modern processor
architectures provide basically no support for protecting software against such
physical attacks.

In this thesis, we work towards fixing this shortcoming of current architectures
and present several novel techniques that enable secure software execution in the
context of physical attacks. In particular, to protect the code, we showcase two
hardware-supported Control-Flow Integrity (CFI) schemes which enforce that
executed instructions are genuine and in correct sequence. Both techniques have
been implemented in real processor designs, come with appropriate toolchain
support, and are tested in simulation and/or on actual FPGA/ASIC hardware.
Additionally, building upon such CFI schemes, a novel software-only technique for
remote attestation has been developed. The new technique effectively incorporates
all common existing approaches and can further be used for online licensing.

In the domain of protecting data against illegal access and tampering, two
approaches for improving the memory subsystem are part of this thesis. Firstly,
an open-source hardware framework for building as well as researching transparent
memory encryption and authentication modules is presented. This framework can
be used to protect data and code against disclosure and tampering via physical
attacks. Secondly, a novel approach for building randomized set-associative CPU
caches has been devised. Caches following this design approach have similar
performance as contemporary designs but are considerably harder to attack via
timing side-channel attacks (e.g., cache attacks).

i

Acknowledgements

This thesis was only possible because many great people supported me along the
way. I am deeply grateful for receiving this kind of support and, in the following,
want to thank those who accompanied me during my PhD studies.
First and foremost, I would like to thank my advisor Stefan Mangard for placing
his faith in me by giving me the opportunity to pursue this degree. Thank you for
introducing me to my field of research, for your continuous guidance, and for the
freedom to experiment with new ideas. I also want to thank Ingrid Verbauwhede
for agreeing to assess my thesis and for providing valuable feedback.
Thank you to all my amazing co-authors that gave me either the chance to
collaborate on their research or actively contributed to mine. In particular,
thank you Ferdinand Brasser, Hannes Groß, Manuel Jelinek, Daniel Kales, Maja
Malenko, Pascal Nasahl, Sebastian Ramacher, Christian Rechberger, Ahmad-
Reza Sadeghi, Roman Walch, and Samuel Weiser for the opportunity to work with
you on exiting papers. Moreover, I am particularly grateful to Luca Benini, Alfio
Di Mauro, Lukas Giner, Daniel Gruss, Frank K. Gürkaynak, Stefan Mangard,
David Schaffenrath, Robert Schilling, Michael Schwarz, Thomas Unterluggauer,
and Erich Wenger, with whom I wrote the papers discussed in this thesis. Thank
you for your input, the fruitful discussions, and all your work.
Thank you also to all past and current colleagues at IAIK for interesting conversa-
tions during coffee/cake/lunch breaks and for the fun group events. I further wish
to thank Christoph Dobraunig, Maria Eichlseder, and Florian Mendel. Unfortu-
nately, we didn’t manage to write a joint paper during my studies but I really
enjoyed our discussions and highly appreciate your help with cryptographic prob-
lems. Furthermore, I am very grateful to Robert Schilling, Thomas Unterluggauer,
and Erich Wenger. Robert, thank you for the great collaborations, for joining
me on the compiler playground, and for ensuring that our hardware/software
keeps working. Thank you, Thomas, for the amazing time at our office, for our
joint papers, for challenging me during discussions, and for having an open ear
for all kinds of crazy ideas. Erich, thank you for motivating me to start a PhD
and for backing me during my first steps in the academic world.
Last, but not least, I wish to express my sincere gratitude to my friends and
family. Thank you for the continuous support, for providing encouragement when
needed, and for all the good times we shared. I am looking forward to many
more exciting and fun years with you.

Mario

ii

Table of Contents

Abstract i

Acknowledgements ii

Table of Contents iii

List of Tables vii

List of Figures viii

Glossary xi

1 Introduction 1
Problem Statement . 2
Motivation and Related Work . 3

Software Attacks . 3
Physical Attacks . 5
Software-controlled Physical Attacks 7

Contribution and Outline . 8

I Providing Control-Flow Integrity and Attestation 11

2 Protecting the Control Flow of Embedded Processors against
Fault Attacks 14
2.1 Control-Flow Integrity in Fault-Tolerant Computing 15

2.1.1 Control-Flow Integrity . 16
2.1.2 Derived Signatures . 16
2.1.3 Generalized Path Signature Analysis 17
2.1.4 Continuous-Signature Monitoring 18

2.2 Control-Flow Integrity in the Setting of Fault Attacks 18
2.2.1 Signature Function Selection 19
2.2.2 Update Function Selection 21

2.3 Prototype Implementation . 23
2.3.1 Hardware Architecture . 23
2.3.2 Source Code Modifications 23
2.3.3 Software Modifications . 24

iii

Table of Contents iv

2.4 Evaluation . 26
2.4.1 Error-detection Coverage 26
2.4.2 Error-detection Latency 26
2.4.3 Monitor Complexity . 26
2.4.4 Memory Overhead and Processor-Performance Loss . . . 27

2.5 Conclusion . 29

3 Sponge-Based Control-Flow Protection for IoT-Devices 31
3.1 Overall Concept . 33

3.1.1 Threat Model and Assumptions 33
3.1.2 Architecture . 34
3.1.3 Authenticated Encryption and Control Flow 35
3.1.4 Patch Handling, Placement and Calculation 37
3.1.5 Initial State Derivation 39
3.1.6 Interrupt Handling . 40
3.1.7 Fast Error Recovery . 41

3.2 Sponge Constructions for SCFP 41
3.2.1 Constructions . 42
3.2.2 Parameter Selection . 44

3.3 Instantiations . 45
3.3.1 Unkeyed Permutations . 45
3.3.2 Keyed Permutations . 48
3.3.3 Discussion . 49

3.4 RISC-V Implementation . 50
3.4.1 Processor Architecture . 50
3.4.2 RISC-V Instruction Set Extensions to support SCFP . . . 51
3.4.3 Extensions of the RISC-V Privileged Architecture 53
3.4.4 Software Toolchain . 53

3.5 Evaluation . 54
3.5.1 Area . 54
3.5.2 Code Size and Runtime 55
3.5.3 Power . 56
3.5.4 Fast Error Recovery Latency 58

3.6 Conclusion . 60

4 Remote Attestation and Licensing via Secure Code Execution 61
4.1 Background . 63

4.1.1 Remote Attestation . 63
4.1.2 Secure Code Execution 64

4.2 Remote Attestation Concept . 65
4.2.1 Threat Model and Trusted Computing Base 65
4.2.2 Overview . 66
4.2.3 Attestation Modes . 68
4.2.4 Licensing Extension . 71

4.3 Implementation . 73
4.3.1 Instance . 73

Table of Contents v

4.3.2 Hardware . 74
4.3.3 Software . 74
4.3.4 Security . 76
4.3.5 Implementation Aspects 77

4.4 Evaluation . 78
4.4.1 Library Characterization 79
4.4.2 Runtime Overhead Estimation and Validation 80
4.4.3 Memory . 82
4.4.4 Further Remarks . 82

4.5 Conclusion . 83

II Counteracting Physical Attacks on the Memory Sys-
tem 84

5 Transparent Memory Encryption and Authentication 86
5.1 RAM Encryption Framework . 87

5.1.1 Challenges . 87
5.1.2 Framework and Application to AXI4 88
5.1.3 Optimizations . 91

5.2 Authentication Trees . 91
5.2.1 Requirements . 92
5.2.2 Functionality . 92
5.2.3 Optimizations . 93

5.3 Evaluation and Discussion . 94
5.4 Conclusion . 98

6 ScatterCache: Thwarting Cache Attacks via Cache Set Ran-
domization 99
6.1 Background . 101

6.1.1 Caches . 101
6.1.2 Cache Side-Channel Attacks 102
6.1.3 Resilient Cache Architectures 104

6.2 ScatterCache . 105
6.2.1 Targeted Properties . 105
6.2.2 Idea . 105
6.2.3 ScatterCache Design 107
6.2.4 Processor Interaction and Software 111

6.3 Security Evaluation . 113
6.3.1 Applicability of Cache Attacks 113
6.3.2 Other Microarchitectural Attacks 114
6.3.3 Complexity of Building Eviction Sets 115
6.3.4 Complexity of Prime+Probe 119
6.3.5 Challenges with Real-World Attacks 120
6.3.6 Noise Sampling . 121
6.3.7 Further Remarks . 123

Table of Contents vi

6.4 Performance Evaluation . 124
6.4.1 gem5 Setup . 124
6.4.2 Hardware Overhead Discussion 125
6.4.3 gem5 Results and Discussion 126
6.4.4 Cache Simulation and SPEC Results 129

6.5 Conclusion . 131

7 Conclusion 132
Outlook . 134

Author’s Publications 136

Bibliography 138

Affidavit 161

List of Tables

2.1 Performance (min(q) ∀t = [1, 50],∀∆Ij
,∀∆Ij+t

) of different poly-
nomials. The polynomials are given in reversed representation. . 22

2.2 Empirical Results for GPSA and CSM regarding RAM, NVM,
and runtime overhead. Additionally, the NVM overhead solely for
justifying and reference signatures is given. 28

3.1 Examples of SCFP instances for a 32-bit ISA and the respective
attack complexities. 49

3.2 Remus post-synthesis area breakdown (kGE) for different clock
constraints, using worst-case libraries (1.08V/125◦C). 57

3.3 Evaluation results of AEE-Light in HDL simulation. 57
3.4 Estimated power consumption for Remus and Patronus with and

without SCFP at 50MHz clock frequency. 59
3.5 Measured power consumption for Patronus with and without SCFP

for the fir benchmark. 59

4.1 Runtime overhead when attesting coremark. 80
4.2 Memory requirements. 82

vii

List of Figures

1.1 Graphical mapping between the presented techniques and the
attack classes which are affected by the countermeasure. 9

2.1 Signature based checking methodologies. 17
2.2 Comparison between CRC-32 and MISR-32. 20
2.3 Simplified processor architecture with grey-shaded modifications. 24
2.4 Runtime overhead of CSM with different horizontal signature

sizes (h-bit). (Relative to GPSA) 29

3.1 High-level system architecture of a classic RISC processor which
has been extended for SCFP with a sponge-based AE decryption
stage. 34

3.2 Data dependencies between two consecutive instructions within
a processor pipeline when SCFP is implemented. The decoder
signals can optionally be fed back. 36

3.3 Simple example of patching the CFG of an if-then-else construct
in SCFP. 37

3.4 Example of a simple patching convention for direct function calls.
Function B can be called from both, function A and C. 38

3.5 Example of a simple patching convention for indirect function
calls. Functions A and C can call both, functions D and E at
runtime. 40

3.6 Decryption using a duplex construction similar to the one used
in SpongeWrap. 42

3.7 Decryption in an APE-like construction. 44
3.8 Remus core pipeline with dedicated SCFP decryption stage and

MMU. 51
3.9 BPEQ (000), BPNE (001), BPLT (100), BPGE (101), BPLTU (110),

BPGEU (111), and BPDEQ (010) implemented as 25-bit greenfield
extension into the custom-2 major opcode. JALP implemented as
25-bit greenfield extension into the custom-3 major opcode and
JALRP implemented as 22-bit brownfield extension into e JALR
major opcode. 52

3.10 Die shot [Sch+18a] of the Patronus chip after bonding. 55

viii

List of Figures ix

4.1 Concept for remote attestation based on secure code execution.
Blue and red paths were added to support graph attestation and
licensing, respectively. Dashed paths are confidential. 66

4.2 Dataflow of remote attestation for a prover. The white compo-
nents form a MAC and the block highlighted in red is a cipher. 67

4.3 Sponge-based MAC used in our prototype. 74
4.4 Runtime performance. 79

5.1 Zynq platform with memory encryption module. 88
5.2 Simple AXI4 memory encryption pipeline which processes write

requests using a RMW approach. 89
5.3 Request modification for a nonce based encryption and authen-

tication scheme like Ascon [Dob+16]. CPU memory requests
are split into chunks with additional alignment to incorporate
metadata for the AE scheme. 90

5.4 Binary TEC tree. 92
5.5 Physical memory layout of the nodes in a binary TEC tree. . . 92
5.6 Memory encryption and authentication pipeline. 93
5.7 Memory bandwidth determined with tinymembench (NEON read

prefetched (64 bytes step), NEON fill). 95
5.8 Memory read bandwidth determined with tinymembench of

Prince CBC with different block sizes and cache controller con-
figurations. 96

5.9 Memory read latency determined with lmbench (lat_mem_rd 8M). 97
5.10 FPGA Utilization of the used Xilinx Zynq XC7Z020 SoC. . . . 98

6.1 Indexing cache sets in a 4-way set-associative cache. 102
6.2 Flattened visualization of mapping addresses to cache sets in a

4-way set-associative cache with 16 cache lines. Top: Standard
cache where index bits select the cache set. Middle: Pseudoran-
dom mapping from addresses to cache sets. The mapping from
cache lines to sets is still static. Bottom: Pseudorandom mapping
from addresses to a set of cache lines that dynamically form the
cache set in ScatterCache. 106

6.3 Idea: For an nways associative cache, nways indices into the
cache memory are derived using a cryptographic IDF. This IDF
effectively randomizes the mapping from addresses to cache sets
as well as the composition of the cache set itself. 107

6.4 4-way set-associative ScatterCache where each index addresses
exclusively one cache way. 108

6.5 Eviction probability depending on the size of the eviction set and
the number of ways. 117

6.6 Number of required accesses to the target address to construct
a set large enough to achieve 99 % eviction rate when no shared
memory is available (cache line size: 32 bytes). 118

List of Figures x

6.7 Example distribution of cache indices of addresses in profiled
eviction sets (nways = 4, bindices = 7). 123

6.8 Expected percentage of noisy samples in an eviction set for a
cache consisting of 212 cache lines. 123

6.9 Cache hit rate, simulated with gem5, for the synthetic workloads
in the GAP benchmark suite with random replacement policy as
baseline. 126

6.10 Cache hit rate, simulated with gem5, for scimark2. 127
6.11 Scimark2 score simulated with gem5. 127
6.12 Memory read latency, simulated with gem5, with 32 byte stride

(i.e., one access per cache line). 128
6.13 Memory read latency, simulated with gem5, with 128 byte stride

(i.e., one access in every fourth cache line). 128
6.14 Cache hit rate, simulated with gem5, for MiBench in small con-

figuration compared to random replacement. 129
6.15 Cache hit rate, simulated with gem5, for MiBench in large con-

figuration compared to random replacement. 130
6.16 Average cache hit rate for SPEC CPU 2017 benchmarks compared

to random replacement over 10 runs. 131

Glossary

AD Associated Data
AE Authenticated Encryption
AEE Authentic-Encrypted Execution
AES Advanced Encryption Standard
ALU Arithmetic Logic Unit
APE Authenticated Permutation-based Encryption
ASIC Application Specific Integrated Circuit
ASLR Address Space Layout Randomization
ASM ASseMbly
AXI Advanced eXtensible Interface

BB Basic Block
BIP Bimodal Insertion Policy

CBC Cipher Block Chaining
CETS Compiler Enforced Temporal Safety
CFG Control-Flow Graph
CFI Control-Flow Integrity
CFP Control-Flow Path
CFT Control-Flow Transfer
CIA Code Injection Attacks
COOP Counterfeit Object-Oriented Programming
cpb cycles-per-byte
CPI Code-Pointer Integrity
CPS Code-Pointer Separation
CPU Central Processing Unit
CRA Code Reuse Attacks
CRC Cyclic Redundancy Check
CSM Continuous Signature Monitoring
CSR Control and Status Register
CVE Common Vulnerabilities and Exposures

DDoS Distributed Denial-of-Service
DEP Data-Execution Prevention
DOP Data-Oriented Programming
DoS Denial-of-Service

xi

Glossary xii

DRAM Dynamic Random-Access Memory
DVFS Dynamic Voltage and Frequency Scaling

ECB Electronic CodeBook
ECC Elliptic-Curve Cryptography
EDA Electronic Design Automation
EM ElectroMagnetic
ESIP Extraction of Software IP
ESSIV Encrypted Salt-Sector Initialization Vector

FAIS Fault Attack induced Instruction Skips
FIFO First In, First Out
FPGA Field Programmable Gate Array

GE Gate Equivalent
GPIO General-Purpose Input/Output
GPSA Generalized Path Signature Analysis

HDD Hard-Disc Drive
HDL Hardware Description Language

I2C Inter-Integrated Circuit
I2S Inter-IC Sound
IDF Index Derivation Function
IE Infective Execution
IoT Internet-of-Things
IP Intellectual Property
IPC Inter-Process Communication
ISA Instruction-Set Architecture

JOP Jump-Oriented Programming
JTAG Joint Test Action Group

LLC Last-Level Cache
LRU Least Recently Used
LSB Least Significant Bit

MAC Message Authentication Code
MAIR Memory Attribute Indirection Register
MISR Multiple-Input Signature Register
MMU Memory-Management Unit
MPU Memory-Protection Unit
MPX Memory Protection eXtensions

NVM Non-Volatile Memory

Glossary xiii

NX No-eXecute

OS Operating System

PAT Page Attribute Table
PC Program Counter
PCB Printed Circuit Board
PID Process IDentifier
PL Programmable Logic
PLC Programmable-Logic Controller
PLRU Pseudo-LRU
PS Processing System
PSA Path Signature Analysis
PTE Page Table Entry
PTW Page-Table Walker

RAM Random-Access Memory
RMW Read-Modify-Write
ROP Return-Oriented Programming

SCE Secure Code Execution
SCFP Sponge-Based Control-Flow Protection
SDID Security Domain IDentifier
SGX Software Guard eXtensions
SHA Secure Hash Algorithm
SME Secure Memory Encryption
SoC System-on-Chip
SPI Serial Peripheral Interface

TCB Trusted Computing Base
TEC Tamper Evident Counter
TEE Trusted-Execution Environment
TLB Translation-Lookaside Buffer
TMTO Time-Memory Trade-Off
TOCTOU Time-Of-Check Time-Of-Use
TPM Trusted Platform Module

UART Universal Asynchronous Receiver-Transmitter
USB Universal Serial Bus

VHDL VHSIC Hardware Description Language
VHSIC Very High Speed Integrated Circuit

XEX Xor-Encrypt-Xor
XTS XEX-based Tweaked-codebook with ciphertext

Stealing

1
Introduction

Essentially every electronic device, which is built nowadays, is controlled by soft-
ware that gets executed by one or more general-purpose processors. The reasons
for this trend towards software and processor-based designs are manifold. For
example, changing software is typically much simpler than updating specialized
hardware that is built for one specific purpose. Relying strongly on software also
makes it possible to easily fix errors and add features, even when the device is
already deployed in the field. Furthermore, production and development costs can
be reduced compared to custom hardware designs. These savings are achieved
since general-purpose processors, as well as the majority of required peripherals,
are widely available as cheap commercial off-the-shelf components. As the result,
although the casing and the intended use case may differ, the architecture of
modern devices—ranging from comparably small smart home gadgets to complex
systems like self-driving cars—gets remarkably similar to a standard computer
architecture. Therefore, the functionality of a device is primarily determined
by the huge and highly complex software stacks, which are embedded into the
device’s firmware.

Unfortunately, exactly this huge amount of complex code is also a problem in
practice. Writing software, which is both complex and correct is still very hard,
especially when high performance and efficiency are needed. This is particularly
problematic, because bugs in software not only degrade the user experience but
also lead to all kinds of security problems. In fact, the majority of notable security
incidents that we know of today were possible due to the exploitation of software
bugs. However, even with perfectly bug-free application software, security of
modern electronic devices is still an issue.

In particular, with the increasing use of mobile devices (e.g., smart phones,
tablets) and the rise of cloud computing, the Internet-of-Things (IoT), and

1

2

Industry 4.0, more and more software gets executed in completely unknown
environments. Trust becomes a serious issue in such scenarios given that even
foundational invariants (e.g., code is executed as programmed) can easily be
violated by the respective device user/owner. Without further protection, a
cloud provider, for example, can access the data of its users or tamper with the
performed computations. After all, cloud providers control the most privileged
software of the system (e.g., hypervisor, operating system) in addition to having
direct physical access to the machine including sub-components like Hard-Disc
Drives (HDDs) and Random-Access Memory (RAM). Moreover, on contemporary
hardware, even completely unrelated third parties are able to mount attacks due
to co-location of different applications on the same hardware, which is common
in cloud computing.

At the other end of the spectrum, IoT and Industry 4.0 device vendors face
very similar challenges given that their products are operated on-premise of the
respective customers. Malicious users can exploit the implied physical access to
arbitrarily tamper with a device and its software. In an industrial application,
for example, this endangers all of the vendor’s software Intellectual Property
(IP) that is deployed in the shipped Programmable-Logic Controllers (PLCs)
and enables the production of counterfeited machinery. Exactly the same threat
scenario also holds true for IoT device vendors that, for instance, specialize in
smart home equipment. Finally, without proper authentication of code and data,
even supply chain attacks that install arbitrary malware on genuine hardware
are facilitated.

Problem Statement
The modern computing landscape is changing rapidly towards mobile devices,
cloud computing, Industry 4.0 and the IoT. In such applications, correct and
secure execution of software—one of the most valuable assets of every modern
device—is of utmost importance. Unfortunately, ensuring that code is exe-
cuted in this way is hardly possible on contemporary general-purpose processor
architectures.

In more detail, most widely used architectures have been optimized for threat
models that only consider software-based attacks. In such a scenario, access
control mechanisms (e.g., memory management/protection units, privilege modes)
are, for instance, sufficient to ensure that the integrity of code is maintained and
that secrets cannot be accessed arbitrarily. The hardware aspects, on the other
hand, are largely neglected under the assumption that all components—including
the processor—behave according to the functional specification.

This simplistic approach is already problematic in purely software-based
attack scenarios as it does not include side-channel attacks (e.g., for stealing data
from co-located cloud users). However, solely relying on functional correctness
is clearly insufficient as soon as a device is operated under the physical control
of an untrusted third party. Adversaries with direct access can, in addition
to mounting software-based attacks, also physically tamper with a device (e.g.,

3

inject faults, probe signals on a bus, measure power consumption). Flipping a
single bit in an opcode of an instruction, for example, can already be sufficient
to bypass a security check and completely compromise a system. Data in RAM
is similarly vulnerable given that one changed bit, for instance in a page table, is
typically enough to circumvent all common access control schemes.

Summarizing, current computing architectures—although commonly deployed
in such settings—are not sufficiently prepared for malicious environments that al-
low physical attacks. The used processor cores lack necessary hardware-support to
enforce the correct execution of instructions and the utilized memory subsystems
fail to provide the desired confidentiality and authenticity properties.

Motivation and Related Work
To provide additional context, the following section elaborates in more detail on
the challenges in terms of security that modern devices face. In particular, we
introduce the most relevant nomenclature as well as attack strategies and briefly
summarize currently deployed countermeasures.

Software Attacks
The term software attack, in this thesis, denotes all attack types that solely
rely on the functional behavior of a system and can exclusively exploit bugs
(e.g., missing or wrong checks) in the implementation and design. In our attack
model for software attacks, we assume that the targeted device is operated in a
protected environment under nominal conditions and is behaving according to
its functional specification. Physical access and interaction with the system is
permitted but restricted to its official input and output interfaces. As a result,
both local (e.g., via a tampered USB stick), as well as remote exploitation over the
Internet, is possible in a software attack. Moreover, functional system simulation
(e.g., in a virtual machine or instruction set simulator) is sufficient to evaluate
and reproduce such a software attack. The basic goal of attackers that perform
software attacks is to alter a device’s behavior, or even to gain full control over
the device.

Software attacks are currently the prevailing attack type for embedded and
mobile devices, as well as for workstations and servers. Considering that soft-
ware bugs are a very common problem, a wide range of attack techniques and
countermeasures have been developed over time.

Historically, code-injection attacks have been the most direct approach to
achieve arbitrary code execution. However, since Data-Execution Prevention
(DEP) is supported on most common platforms using the No-eXecute (NX) bit
of the Memory-Management Unit (MMU), code-injection attacks are hardly
possible anymore. Code-reuse attacks that alter the control flow of a program,
like for instance return-to-libc [Ner01; Sol97], Return-Oriented Programming
(ROP) [Sha07], Jump-Oriented Programming (JOP) [Ble+11], and Counterfeit
Object-Oriented Programming (COOP) [Sch+15], have been found as effective

4

alternative attack techniques. As countermeasures against code-reuse attacks,
mainly cheap probabilistic methods like Address Space Layout Randomization
(ASLR) and stack canaries [Cow98] are widely used. More sophisticated tech-
niques based on Control-Flow Integrity (CFI) [Aba+09], on the other hand, are
often too coarse grained [Car+15; Dav+14; Gök+14] or too expensive to gain
adoption. Moreover, even when the control flow is properly enforced, data-only
attacks like Data-Oriented Programming (DOP) [Hu+16] are still possible.

Taking a step back and looking at the software security problem more ana-
lytically shows that the key to basically every commonly used software attack
technique is the lack of memory safety [Sze+13]. The main reason for this prob-
lem is that C and C++, the most widely used system programming languages,
do not enforce memory safety by default. Unfortunately, also retrofitting full
memory safety, using, for example, a combination of SoftBound [Nag+09] and
Compiler Enforced Temporal Safety (CETS) [Nag+10], seems to be too slow
for widespread adoption. Partial memory safety, like provided by SafeStack,
Code-Pointer Integrity (CPI), and Code-Pointer Separation (CPS) [Kuz+14], can
therefore be used as compromise between performance overhead and protection.

Modern processor architectures currently only give little support to address
the memory safety issue effectively. Intel’s MPX is the only widely deployed
hardware extension which supports, for example, bounds checking with fine
granularity. However, performance-wise the advantage of using MPX compared
to software-only approaches is still negligible [Ole+17]. The currently predomi-
nant software security approach supported by hardware are Trusted-Execution
Environments (TEEs) [Mae+18] like Intel’s SGX [Hoe+13; McK+13] and ARM’s
TrustZone [ARM09]. However, these TEEs are more or less comparable to yet
another privilege level of the processor and do not address the original memory
safety problem. Subsequently, using such a TEE requires to partition an appli-
cation into secure and insecure parts but does not prevent attacks within the
individual partitions [Bio+18; Lee+17; SWG19].

Large software vendors therefore approach the problem of software security
by implementing bug bounty programs (e.g., Facebook [Fac], Google [Goob],
Microsoft [Mic]) that encourage users to search and responsibly disclose problems
in their products. Subsequently, security updates are provided based on the
reported vulnerabilities, given that the respective product is still supported by
the manufacturer. Unfortunately, this is not always the case. Especially in
the smart phone sector (e.g., Android) the lack of longtime support by many
vendors is a serious issue, which leaves a multitude of devices [Gooa] deliberately
vulnerable to software attacks [Det].

Devices which are built solely on open-source software often do not have
this problem, assuming that a strong community supports the respective gadget.
However, also open-source software has its issues. Although many vendors rely
on free software components in their products, comparably little resources are
invested in maintenance and security audits by the respective commercial users.
This is critical given that even a single bug in a commonly used open-source
library can have a devastating impact. The simple buffer over-read CVE-2014-

5

0160 [Cor13] in the OpenSSL library, which is more widely known as Heartbleed,
is a prime example for this problem. Interestingly, since Heartbleed, several
other security vulnerabilities have been branded with fancy names and logos
(e.g., Shellshock [Cor14], Dirty COW [Cor16]). However, note that the risk
potential of a vulnerability is not necessarily related to its media coverage. Many
other vulnerabilities, based on sometimes even more dangerous but less known
bugs, can be exploited too.

In summary, independent of the specific reasons, regular reports on data
breaches (e.g., LinkedIn [Sil12], Sony [Cor11; Pic14], Yahoo [CIS16], Equifax
[Off18], Marriott [Roo19]), large scale cyber-attacks (e.g., DDoS against Dyn
[Inc16] using the Mirai [Ann16] botnet), and hacked devices (e.g., iOS jailbreaks
[Wik], WiiU [fai14], Playstation 4 [fai15]) clearly show that the problem of
secure software in the context of software attacks is far from solved on current
architectures.

Physical Attacks
Unfortunately, having correct software is only a necessary but not sufficient
requirement for building an overall secure system. For correctness, software
relies on the fact that it is executed by the processor exactly in the intended
way. Under normal operation conditions, as in our software attack model which
idealizes the hardware, this is assumed to be true despite the fact that hardware
bugs are common too. Unfortunately, the situation changes dramatically as soon
as an adversary has physical access to the respective device. In such a potentially
malicious environment, an attacker can perform physical attacks by tampering
with the device in every possible way.

In this thesis, we use the term physical attack to denote attack types that
exploit this reality and take into account that hardware is far from ideal in
practice. The physical attack model complements the previously defined software
attack model by extending it with unrestricted access to a device including
its internal building blocks and its physical properties (e.g., timing behavior,
power consumption, all kinds of emanation). Adversaries that operate within
this model are, in the strongest interpretation, only limited by physics and their
own abilities—they are allowed to perform any measurement/modification they
can achieve. However, unrestricted capabilities are far too strong in practice.
Researchers, therefore, often focus on finding solutions in more realistic subsets
of the model by restricting the attack capabilities to certain operations (e.g.,
reading, writing), and by introducing security boundaries (e.g., signals on a chip
cannot be arbitrarily probed).

Note also that software attacks, which operate in a subset of our physical
attack model, are commonly not considered to be physical attacks. They are
considered as an individual attack class distinguished by the type of exploited
vulnerabilities or the needed type of access to the target—classical physical
attacks require physical access whereas software attacks do not. However, these
simple classifications fail to be sufficient given that more recent attacks manage
to introduce/exploit similar effects as classical physical attacks using software.

6

Considering that also the needed countermeasures are similar, we consider these
new attack types to be physical attack variants, denote them as software-controlled
physical attacks, and selected our attack models accordingly.

In literature, physical attacks are often restricted/distinguished based on the
characteristics of the performed attacks [Sta10] (e.g., active vs. passive, invasive
vs. non-invasive) or using special nomenclature (e.g., fault attacks, side-channel
attacks). Fault attacks are, for instance, active physical attacks that intentionally
violate presumed invariants of a device to introduce faults into the performed
operations. Commonly used attack vectors for injecting faults are, for example,
supply voltage [Aum+02], maximum frequency [AK97], the allowed temperature
range [Sko02], and the tolerated amount of injected photoelectric [SA02] or
ElectroMagnetic (EM) [Sam+02] energy. Especially in the context of processors
and software execution, fault attacks have been shown to be very powerful.
Adversaries can, for example, use precisely timed voltage and clock glitches to
deterministically skip and repeat instructions [KH14; KSV13].

Countermeasures [Bar+04] against fault attacks, are typically either sensor or
redundancy based. Hardware sensors try to detect the event of the fault injection.
Adding sensors is easy but has the disadvantage that unorthodox injection
techniques, for which no sensors have been integrated, can stay undetected.
Redundancy-based schemes, on the other hand, try to detect or even correct
the actual fault, i.e., the effect of the injection. Therefore, redundancy-based
approaches work against any potential fault injection technique. In theory,
approaches which are also used for soft-error detection [Gol+06] can be used
in the context of fault detection as well. However, it has to be noted that,
unlike random soft errors, fault attacks can be very controlled [Sel+15]. Simple
approaches like direct duplication are therefore not sufficient. Furthermore,
implementations in pure software are also hardly possible given that not a single
instruction can be executed reliably without special protection.

Side-channel attacks [Sta10] are also attack types that are typically considered
as passive physical attacks. The basic idea of side-channel attacks is to infer
information about internally processed data solely by observing related externally
visible signals during the operation. In the simplest case, this external signals can
be some data bus over which confidential information is transmitted into another
microchip. However, as soon as cryptography is used, most probably power
consumption [KJJ99] or EM radiation [Agr+02] are observed. Using the captured
information, subsequently, the internal state is revealed using statistical techniques
and signal processing [MOP07]. As countermeasures against side-channel attacks,
typically various types of hiding [MMS01] (reduces the signal-to-noise ratio) and
masking [GP99] (splits and randomizes information into shares) are used.

Unfortunately, state-of-the-art processor architectures feature very little pro-
tection against physical attacks. In fact, only the latest high-end Intel (as part of
SGX [Gue16]) and AMD (SME [KPW16]) processors consider physical attacks
at all. Both companies recognize the previously described trust problem in cloud
scenarios and support transparent RAM encryption. This is sufficient to address,
for example, cold boot attacks [Hal+08]. However, fault attacks and side-channel

7

attacks, on the other hand, are still not really considered a problem by most
vendors. Subsequently, other physical attacks like, for instance, the reset glitch
attack on the Xbox 360 [fre] or the NAND mirroring attack on the iPhone [Sko16]
are still widely applicable.

Software-controlled Physical Attacks. To make matters worse, recent at-
tacks even show that mounting a physical attack does not necessarily require
physical access to a device.

Rowhammer-based [Kim+14] fault attacks, for example, exploit that fast
and highly controlled accesses to selected memory cells in modern Dynamic
Random-Access Memory (DRAM) can cause bit flips in neighboring memory
cells. After reverse engineering the involved mapping functions, adversaries
can craft access patterns that trigger this behavior to inject faults into DRAM.
Note that such attacks do not necessarily require native [SD15] code execution
capabilities but can also be mounted remotely using JavaScript [GMM16] or via
the network [Lip+18a; Tat+18]. Also devices (e.g., a Field Programmable Gate
Array (FPGA) [Wei+19b]) in the same System-on-Chip (SoC) can be used for
fault injection and DRAM with error-correcting codes is vulnerable [Coj+19] too.
Finally, these faults can be used to mount Denial-of-Service (DoS) attacks on
SGX [Jan+17] and for escalating privileges by modifying page tables [SD15] or
instruction encodings [Gru+18]. In terms of countermeasures [Lou+19], using
more conservative refresh rates as well as probabilistically refreshing neighboring
rows [KNQ15] appear to be the most reliable approaches.

Other examples for software-controlled fault attacks are the recent voltage (e.g.,
Plundervolt [Mur+20], V0LTpwn [Ken+19], Voltjockey [Qiu+19a; Qiu+19b])
and clock (e.g., CLKSCREW [TSS17]) glitch attacks against TEEs. These
attacks exploit that TEEs, like SGX and TrustZone, should be secure even with
a compromised Operating System (OS) running in ring 0 on x86 or in privilege
level 1 on ARM. However, operating systems are typically in charge of controlling
the Dynamic Voltage and Frequency Scaling (DVFS) [Wei+94] capabilities of
modern processors. An attacker with control over the OS can, hence, misuse
the DVFS for overclocking/undervolting the processor to inject faults into TEE
computations.

Side-channel attacks [Spr+18] are a rather active research field of the software-
security community too. Modern mobile devices feature a multitude of different
sensors (e.g., accelerometer, gyroscope, ambient light) that can be accessed from
software and facilitate sensor-based side-channels attacks. Such attacks, for
instance, permit to track a user by fingerprinting sensors [Dey+14], to infer
the location of a device [Han+12], and to log key as well as pin inputs [CC11;
Spr14] without requiring any special privileges. Typical approaches to counter
sensor-based side-channels attacks [Spr+18] are stricter permission systems and
limiting the sampling frequency. However, the overall problem is still unsolved
given that both strategies only make exploitation harder at the cost of reduced
usability/functionality for genuine applications.

Finally, in the context of processors and software execution, timing-based

8

side-channel attacks [Koc96] have to be mentioned. Cache attacks, probably the
most famous type of software-controlled timing side-channel attacks on processors,
were extensively studied by the community in recent years resulting in a sizeable
portfolio of attacking techniques [Ber05; GBK11; Gru+16b; OST06; YF14] and
countermeasures [WL07; WL08]. Unfortunately, industry opted to ignore these
types of attacks for a long time due to the cost of the mitigations. However,
recent advances in transient execution attacks (e.g., Meltdown [Lip+18b], Spec-
tre [Koc+19]), which often exploit cache covert channels for data exfiltration,
definitely increased interest in cache attack countermeasures.

Contribution and Outline
In this thesis, we tackle the problem of secure and trusted software execution in
malicious environments that include physical access to a device. While the primary
focus of our work is the prevention of physical attacks, also software attacks are
mitigated whenever possible. To make progress towards the ambitious goal of
building more secure systems, our approach is to augment contemporary system
architectures with minimal hardware extensions. These hardware extensions
serve as security-anchor on which further countermeasures can be built efficiently
in software. Following this methodology, we developed several techniques that
can be used to build efficient general-purpose computing architectures that are
hardened against physical tamping.

We structured our contributions into two main parts based on to the protection
the individual approaches provide. Part I focuses on extensions to the core of
a processor, which ensure that code is always executed in the correct sequence.
These extensions either prevent the successful execution of wrong code by design
or permit to establish trust into a device by making its software execution locally
and/or remotely attestable. In Part II, on the other hand, protecting arbitrary
code and data against direct modification as well as indirect exposure (e.g., via
side-channel attacks) are the central topic. The approaches in this context are
mainly modifications to the memory subsystem and can be deployed completely
independent of our processor core extensions.

The following paragraphs outline the contributions in the individual parts and
chapters in more detail. Additionally, an illustration of the presented techniques
in relation to the affected attack classes is provided in Figure 1.1. Note, however,
that a connection between a scheme and an attack category does not necessarily
imply that all attacks within the respective category are mitigated.

Part I: Providing Control-Flow Integrity and Attestation. In Chap-
ter 2, we present our first contribution [WWM15] on code protection by bringing
CFI into the context of fault attacks. For this work, we analyzed requirements
for successful fault detection and evaluated various building blocks according to
the determined criteria. The resulting countermeasure is effectively an extension
of an old soft-error detection technique into the security context. Last but not
least, we have shown the practicability of the concept using a demonstrator

9

Software Attacks Physical Attacks

Data Code
Code Data

Side
Channels

Fault Attacks

GPSA/CSM

SCFP

Remote Attestation and Licensing

MEMSEC

ScatterCache

Chapter 2

Chapter 3

Chapter 4

Chapter 5

Chapter 6

Figure 1.1: Graphical mapping between the presented techniques and the attack
classes which are affected by the countermeasure.

that comprises a marginally modified ARM Cortex-M3 clone and a suitable C
compiler toolchain based on LLVM.

Our second contribution [Wer+18], presented in Chapter 3, builds on our
previous work and extends the fault attack countermeasure with sponge-based
Authenticated Encryption (AE) techniques. By doing so, we gain a code pro-
tection scheme, named Sponge-Based Control-Flow Protection (SCFP), which
not only is able to detect fault attacks but also delivers a configurable amount
of confidentiality and authenticity. SCFP with a sufficiently large sponge, fur-
thermore, also can be used to protect code against software attacks. This is
possible given that SCFP is actually very similar to CFI techniques that are used
to prevent code-reuse attacks. To demonstrate the viability of the concept, we
extended a RISC-V processor with SCFP support and developed a corresponding
LLVM-based toolchain.

Finally, in Chapter 4 we describe how schemes like SCFP, which decrypt code
in execution order, can be used as foundation for remote attestation schemes
that establish trust in computations performed on remote compute nodes. In this
chapter we show that common static and path remote attestation schemes can be
built purely in software using SCFP as hardware security anchor. Additionally, by
taking advantage of the inherent balancing needed for encrypted code execution, a
novel graph attestation mode as well as an online licensing approach are proposed.

Part II: Counteracting Physical Attacks on the Memory System.
In Chapter 5, we present our first contribution [Wer+17] in the data pro-
tection domain—MEMSEC, an open-source framework for building transpar-
ent memory encryption and authentication modules. The developed encryp-
tion/authentication modules feature an AXI4 bus interface and can be used in
FPGA and Application Specific Integrated Circuit (ASIC) designs to protect data
in memory against tampering. The framework is written in VHDL and enables
easy prototyping of different encryption and authentication modes. As ciphers,

10

AES, Prince, and Ascon are used in different modes (e.g., ECB, CBC, XTS) of
operation. Evaluation has been performed under real-world conditions using a
Xilinx Zynq SoC FPGAs where the entire memory traffic of ARM processors
running Linux is processed.

Last but not least, in Chapter 6, we elaborate on our cache attack coun-
termeasure ScatterCache [Wer+19b]. In the novel ScatterCache design,
we combine lightweight cryptographic primitives with per-way addressing lo-
gic, which yields a randomized and skewed set-associative cache. The resulting
cache is drop-in compatible with existing set-associative caches, but has the
added benefit of complicating eviction-based attacks considerably. The design
additionally features an optional software-controlled tweak, i.e., the Security
Domain IDentifier (SDID), that enables ScatterCache-aware operating system
to control if data, while shared memory in RAM, should also be shared in the
cache. Performance evaluation has been performed using the gem5 full system
simulator and a custom-made cache simulator.

Finally, we conclude this thesis in Chapter 7 by summarizeing our achievements,
discussing opportunities for future work, and by presenting all our (co-)authored
publications.

Part I

Providing Control-Flow
Integrity and Attestation

11

12

Executing code correctly is next to impossible on contemporary processors
when physical attacks are considered given that even a single bit flip is sufficient
to completely change the semantic of a program. Furthermore, neither local nor
remote support for retrospectively detecting if any tampering has been performed
is available.

We address these two problems in this first part of the thesis and present two
processor core extensions that provide fine grained CFI. Additionally, building
upon the second CFI scheme, a novel remote attestation technique is discussed.
The content of Part I is largely based on two publications [Wer+18; WWM15] that
have been extended based on two internal manuscripts. The enumeration below
maps the individual chapters to the respective papers, clarifies my contributions,
and acknowledges the work of my collaborators.

• Chapter 2 is primarily based on the following publication that was presented
at CARDIS 2015 in Bochum (Germany):
Mario Werner, Erich Wenger, and Stefan Mangard. “Protecting the
Control Flow of Embedded Processors against Fault Attacks.” In: Smart
Card Research and Advanced Applications – CARDIS. 2015, pp. 161–176.
doi: 10.1007/978-3-319-31271-2_10

I am the main author of this paper, wrote the majority of the text, per-
formed all experiments, and implemented the GPSA hardware extension
as well as all software components. Erich Wenger contributed to the text
and programmed the used ARMv7-M processor along with Thomas Unter-
luggauer. Stefan Mangard supplied the original idea and supported the
project in many discussions. Conceptually, this paper is a followup to my
master’s thesis but shares neither the implementation nor text.

• Chapter 3 is primarily based on the following publication that was presented
at EuroS&P 2018 in London (United Kingdom):
Mario Werner, Thomas Unterluggauer, David Schaffenrath, and Stefan
Mangard. “Sponge-Based Control-Flow Protection for IoT Devices.” In:
European Symposium on Security and Privacy – EuroS&P. Best Paper
Award. 2018, pp. 214–226. doi: 10.1109/EuroSP.2018.00023

Again, I am the main author of this paper and developed the main con-
cepts (e.g., instruction stream encryption, software handling, RISC-V ISA
extension). Furthermore, I wrote the majority of the text, performed all
experiments in HDL simulation, and developed the core components of the
software toolchain. Thomas Unterluggauer contributed to the project with
text and, together with Stefan Mangard, in many productive discussions.
David Schaffenrath designed Remus, our RISC-V processor with SCFP
support, as part of his master’s thesis at the Institute for Integrated Sys-
tems (IIS) at ETH Zurich. Therefore, also Frank K. Gürkaynak, Germain
Haugou, Beat Muheim, and Prof. Luca Benini—David’s supervisors and
colleagues at ETH Zurich—contributed to the HDL design too. Finally,
Robert Schilling supported me in maintaining the software toolchain, and

https://doi.org/10.1007/978-3-319-31271-2_10
https://doi.org/10.1109/EuroSP.2018.00023

13

Florian Mendel and Christoph Dobraunig provided guidance on the involved
cryptographic primitives and modes.
Additionally, from an internal manuscript, chip area and power consumption
results for the Patronus ASIC were added to this thesis. The area results
have been provided by Frank K. Gürkaynak and the power measurements
were performed by Alfio Di Mauro, both from ETH Zurich.

• Chapter 4 is entirely based on an unpublished manuscript of which I am
the main author. I contributed the main part of the text, the idea for graph
attestation and licensing as well as the HDL simulation results. Thomas
Unterluggauer contributed to the text, the software implementation and
the analysis.

2
Protecting the Control Flow of

Embedded Processors against Fault
Attacks

Fault attacks are a very active field of research since the seminal publication of
the Bellcore attack [BDL97] in 1997. The basic idea of such a fault attack is to
operate devices outside their specified operation conditions in such a way that
faults occur during critical operations. For instance, unless countermeasures are
implemented, observing only few faulted executions of a keyed cryptographic
primitive can already be sufficient to reveal the used secret key. A comprehensive
introduction to fault attacks and countermeasures for cryptographic primitives
can be found in [JT12].

However, while most of the research on fault attacks focuses on attacking and
securing cryptographic primitives, it is important to point out that securing a
cryptographic primitive is not sufficient to secure a system. For example, the
Xbox 360 has not been compromised because of a fault attack on a cryptographic
primitive. It has been attacked successfully because it was possible to use a glitch
on the reset line to make the system bypass the signature check of the loaded
software [fre]. In case of such attacks on the control flow of the executed software,
often a single successful fault induction is sufficient to compromise the security
of a system completely (e.g., by branching to an administrative function, by
obtaining root privileges, or by skipping all kinds of security checks). Attacks on
the control flow also allow to bypass certain countermeasures for cryptographic
computations. In [WWM11] for example, techniques for multiple fault inductions
are discussed to first induce a fault in a cryptographic computation and then to
bypass the comparison with a redundant computation.

14

2.1. Control-Flow Integrity in Fault-Tolerant Computing 15

When we started to work on this topic, only very few publications dealt
with the challenge of securing the control flow of software against fault attacks
and none of them seemed to be suitable for wide deployment. The software-
based approaches [LHB14; Sch+10], for instance, either only allowed to detect
integrity violations at a coarse level of granularity—where some modified, missing,
or repeated instructions stay undetected—or introduce huge overheads. The
hardware-based approaches [Aro+06; RCS02; RS05] looked more promising but
still incur significant complexity and overheads (e.g., one signature per basic
block)—in particular when larger programs are protected.

Contribution. In this chapter, we discuss how we improved upon related
work in this regard and present an efficient hardware-supported technique to
ensure control-flow integrity, even in the presence of fault. Our technique builds
upon Generalized Path Signature Analysis (GPSA) that has been introduced
in the context of soft errors by Wilken and Shen [WS88; WS90]. We, therefore,
investigate the requirements for fault detection in the setting of fault attacks and
adapt the scheme of Wilken and Shen accordingly. Furthermore, we present an
implementation of the resulting countermeasure using state-of-the-art hardware
(i.e., an ARM Cortex-M3 compatible processor) and software (LLVM compiler
infrastructure).

To the best of our knowledge, this work is the first to actually implement a
Control-Flow Integrity (CFI) scheme based on GPSA. Our prototype implemen-
tation is primarily software-oriented, increases the processor size by merely 6.4 %,
and detects every fault on the instruction-stream with 99.9 % probability within
three cycles. The runtime overhead of the protected applications ranges from 2 %
to 71 %. The majority of this overhead is caused by our software-heavy handling
of conditional branches. Subsequently, cryptographic primitives, which typically
have a low number of conditional branches, can be protected with comparably
low costs.

Outline. This chapter is organized as follows. Section 2.1 gives an introduction
on control-flow integrity and the existing work of Wilken and Shen. Section 2.2
presents how we adapt the scheme to the setting of fault attacks. Our prototype
implementation is discussed in Section 2.3 and the corresponding evaluation
results can be found in Section 2.4. Finally, the chapter is concluded in Section 2.5.

2.1 Control-Flow Integrity in Fault-Tolerant
Computing

The detection of faults in the control flow of a program requires to include
redundant information about the control flow into the program. The concept of
GPSA by Wilken and Shen [WS88; WS90] is a very efficient technique to add
this redundancy. In the following subsections, we first define the problem of
control-flow integrity and then discuss the concept of GPSA.

2.1. Control-Flow Integrity in Fault-Tolerant Computing 16

2.1.1 Control-Flow Integrity
The control flow of a program refers to the order in which its instructions,
branches, and function calls have to be executed. Two instruction types can be
distinguished in this context. First, sequential instructions, like arithmetic and
memory operations, that only have indirect influence on the execution sequence.
They are executed in strictly sequential order and have exactly one subsequent
instruction. Second, control-flow instructions, like branch and call, that alter
the execution sequence directly. Control-flow instructions have one or more
subsequent instructions and can select which one is executed next.

A program is typically structured into code fragments which consist out of
an arbitrary number of sequential instructions (zero or more) followed by up
to one control-flow instruction. Such fragments are denoted as basic blocks. A
basic block is a strictly sequential piece of code which can only be entered at the
first and exited after the last instruction. All basic blocks of a program form the
so-called Control-Flow Graph (CFG). The edges in a CFG are always directed
and describe in which way the control flow can be transferred from one basic
block to another. Ensuring CFI during the execution of a program means that
all instructions in a basic block are executed by the processor as defined in the
original program (i.e., no instructions are skipped or altered) and that no new
connections are added to the control-flow graph (i.e., no other branches are done
than those defined at compilation time).

Control-flow integrity does not include the protection of the decision which
path is taken in a CFG. This requires protecting the integrity of the data that
is used for the decision. However, it is important to note that data integrity
cannot be achieved without control-flow integrity. CFI is the basis for further
countermeasures, like data integrity. For example multiple computations and
comparisons can be done to ensure data integrity and the techniques for CFI
make sure that all these operations are indeed executed by the processor.

2.1.2 Derived Signatures
Derived signatures are a common technique in fault-tolerant computing to detect
violations of the integrity of the control flow. The basic idea of a derived signature
is to add a small piece of hardware to the processor executing the software that
should be protected. Upon the execution of each instruction, the hardware
updates a checksum based on the executed instruction and the corresponding
control signals of the decoder. In the literature on CFI in fault-tolerant computing,
such a checksum is called “derived signature”. It is important to note that it is
not a cryptographic signature. Nevertheless, in order to be consistent with the
existing literature, we also use the term derived signature to denote a checksum
that is calculated in hardware based on a sequence of executed instructions.

In order to check such a derived signature when a program is executed, it
is necessary to have corresponding reference values. Derived signatures depend
on the executed instructions and the initial value of the signature. As both are
known at compilation time, reference values can be calculated when a program

2.1. Control-Flow Integrity in Fault-Tolerant Computing 17

%1
check()

while
check()

%2
check()

%4
check()

%3
check()

%5
check()

%6
check()

(a) Basic block checking

%1

while

%2

%4
update()%3

%5
update()

%6
check()

(b) GPSA updates + checking

Figure 2.1: Signature based checking methodologies.

is created. Typically, the reference values are embedded into the program by
instrumenting the binary, either during compilation or in a post-processing step.

Derived signatures can for example be checked at the end of every basic block.
This is shown in Figure 2.1a. The figure shows a control-flow graph with six basic
blocks, labelled %1 to %6 that include a while loop. At the end of each basic
block a signature check is done and therefore a reference value for each basic block
has to be added to the program. This is for example done in [Aro+06], [RCS02]
and [RS05]. However, this leads to a significant overhead, which can be avoided
when using generalized path signatures. Furthermore, there is no protection for
the connections of the basic blocks.

2.1.3 Generalized Path Signature Analysis
In [Nam82], the so-called Path Signature Analysis (PSA) has been introduced.
PSA checks the integrity not only for a basic block, but along paths through a
control-flow graph. This significantly reduces the overhead. Wilken and Shen
in [WS88; WS90] extended PSA into GPSA in order to optimize the overhead.

The basic idea of GPSA is to insert signature updates into the program code
in such a way that independent of the used paths in a CFG, the signature value at
a given instruction is always the same. This idea is illustrated in Figure 2.1b. At
the end of basic block %4, there is an update that makes sure that the signature
at the beginning of %5 is the same independent of the fact whether it is reached
via %3 or %4. The update at the end of %5 ensures that the signature at the
beginning of the while loop is independent of the fact whether it is reached via %1
or %5. The values that need to be stored in the program code to do the updates
are called justifying signatures [WS88] and they are calculated at compilation
time—just like the reference values for the checks.

2.2. Control-Flow Integrity in the Setting of Fault Attacks 18

The concept of GPSA optimizes the number of total justifying signatures in
a CFG and can also be extended to protect function calls. In case of function
calls, there is an additional justifying signature necessary for each function call.
For details, please refer to [WS88].

GPSA does not require to have a check in every basic block and allows to
place signature checks at arbitrary positions in the program. These checks are
denoted as vertical signature checks. At minimum, it is necessary to insert one
signature check at the end of the program as it is done in Figure 2.1b. Depending
on the application, a trade-off has to be made between between runtime and
memory overhead on the one hand and the detection latency on the other hand.

2.1.4 Continuous-Signature Monitoring
Wilken and Shen proposed Continuous Signature Monitoring (CSM) as an al-
ternative concept to the manual placement of signature checks and to solve the
latency problem of vertical signature checks. The idea of CSM is to check the
signature, or at least parts of it, on every executed instruction. Implementing
CSM on top of GPSA is therefore as simple as checking hbits of the |S|-bit
runtime signature on every executed instruction.

It has been proposed to use spare bits in the instruction encodings or to em-
bed reference information into the error-correction/detection bits of the memory
system. However, these approaches are not applicable to most modern proces-
sor architectures given their dense instruction encodings and the lack of error
detecting memory.

2.2 Control-Flow Integrity in the Setting of
Fault Attacks

Fault attack detection is per se very similar to the detection of soft errors. The
main difference between the two is the fault model. Soft errors occur randomly at
a low frequency. Fault attacks on the other hand can be very controlled. When
comparing different checksums for derived signatures, it is therefore important to
not only look at average detection probabilities but to also keep the worst case
scenario in mind.

This section elaborates on the required properties that are needed in order
to make the schemes of Wilken and Shen ready for fault attacks. We define
functional requirements for both, the signature and the update function, which
make single faulty instructions detectable with certainty. We further show that
the actual function selection has an huge impact on the detection capabilities.
The best of the evaluated functions can detect up to 7 faulty bits in the instruction
stream across two cycles with certainty.

2.2. Control-Flow Integrity in the Setting of Fault Attacks 19

2.2.1 Signature Function Selection
The calculation of derived signatures can be modeled using a compression func-
tion f which is used in a Merkle-Damgård-like mode of operation. The next
signature Sj+1 = f(Sj , Ij) is calculated based on the preceding signature Sj and
the current instruction Ij . Collisions across multiple iterations of the signature
function are unavoidable given that the signature value S has fixed size. However,
choosing a signature function with specific properties can at least provide certain
worst-case guarantees.

Functional Requirements

The signature function f needs the following properties in order to make a single
faulty instruction Ij ⊕∆Ij

detectable with certainty, independent of the actual
error ∆Ij

and the number of faulty bits HW (∆Ij
).

• Reliability: Every error in the instruction stream (∆Ij 6= 0) has to result in
a signature error (∆Sj+1 6= 0) given that the original signature was correct
(∆Sj

= 0). Note that this requirement can only be fulfilled if |S| ≥ |I|.

Sj+1 ⊕∆Sj+1 = f(Sj , Ij ⊕∆Ij), ∀∆Ij 6= 0→ ∆Sj+1 6= 0 (2.1)

• Error preservation: An error, absorbed into the signature Sj ⊕∆Sj
, must

not be eliminated by an error-free sequence of inputs (∆Ij
= 0). This

requirement allows to arbitrarily delay the checking of a signature. Conse-
quently, the number of necessary signature checks can be reduced.

Sj+1 ⊕∆Sj+1 = f(Sj ⊕∆Sj
, Ij), ∀∆Sj

6= 0→ ∆Sj+1 6= 0 (2.2)

• Non associativity: The order in which instructions Ij , Ik are absorbed by
f must have an influence on the resulting signature value.

∀Ij 6= Ik → f(f(Sj , Ij), Ik) 6= f(f(Sj , Ik), Ij) (2.3)

• Invertibility: Depending on the concrete implementation of the scheme,
invertibility may also be a requirement. The signature function should
therefore be invertible in S given Sj+1 and Ij . Our implementation for
example uses this property to be able to place signature updates at arbitrary
places along a path through the CFG. A different implementation, which
enforces that signature updates are only performed at merging points in
the CFG, would be able to cope without this property.

Sj = f−1(Sj+1, Ij), ∀Sj+1,∀Ij (2.4)

Choosing the Signature Function

Classical choices for checksums in the setting of fault-tolerant computing are
Cyclic Redundancy Check (CRC) and Multiple-Input Signature Registers (MISRs)

2.2. Control-Flow Integrity in the Setting of Fault Attacks 20

0 10 20 30 40 50 6010−8

10−7

10−6

10−5

10−4

10−3

10−2

10−1

100

101

of bit-flips

Pr
ob

ab
ili
ty

[%
]

CRC-32
MISR-32

(a) Probability density function for q(j, 1).

0 10 20 30 40 500

2

4

6

8

10

Instructions (t)

#
of

bi
t-
fli
ps

CRC-32
MISR-32

(b) Min. # of bit-flips for collision.

Figure 2.2: Comparison between CRC-32 and MISR-32.

with various polynomials. MISRs as well as CRCs fulfill the mentioned require-
ments. However, they are not equally suited when fault attacks with high control
over the injected fault are considered.

For the evaluation of different signature functions, we evaluated the number of
bit-flips required to introduce a fault on one instruction ∆Ij and to compensate it
with a fault on a subsequent instruction ∆Ij+t

. The sum of the bit-flips required
for both faults q(j, t) = HW (∆Ij

) + HW (∆Ij+t
) is a measure for the attack

complexity. The quality function q has been chosen in this way to take into
account that exact knowledge of the injected fault is needed in order construct
and subsequently inject the compensating fault. Average as well as worst-case
performance is important when fault attacks are considered.

A comparison between the signature functions CRC-32 and MISR-32 (identical
polynomial) based on the probability density function of q(j, t) at t = 1 is shown
in Figure 2.2a. CRC-32 as well as MISR-32 have an expected number of bit-flips
of 32. The expected value for q(j, t) in general is identical to the degree of
the reduction polynomial for both MISR and CRC codes. Performance in the
average case is therefore identical which makes them equally suited for soft-error
detection.

The worst-case performance on the other hand is different. The comparison
in Figure 2.2b (min(q) ∀∆Ij

,∀∆Ij+t
) shows that the CRC-32 is superior to the

MISR-32 regarding worst-case performance. The used CRC enforces that at least
7 bit-flips are needed in order to construct a collision. The MISR on the other
hand can already be defeated using 2 bit-flips within the first 31 instructions.

2.2. Control-Flow Integrity in the Setting of Fault Attacks 21

This weakness is caused by the simple structure of the MISRs which makes them
not suited as signature functions in the fault attack context. A more extensive
comparison between various polynomials regarding worst-case performance can
be found in Table 2.1.

2.2.2 Update Function Selection
The second function which is required in GPSA and CSM implementations is
the so-called update function. This function is needed in order to balance the
various paths through the control-flow graph. The update function u calculates
the next signature Sj+1 = u(Sj , Jj) based on the preceding signature Sj and a
justifying signature constant Jj . The update function has to fulfill the following
requirements in order to be usable for GPSA.

• Full control: All possible signature values Sj+1 have to be constructible
given an arbitrary Sj and a justifying signature Jj . Note that, the size of
J must be larger or equal to S (|J | ≥ |S|) to modify each bit in S.

Sj+1 = u(Sj , Jj), ∀Sj+1,∀Sj ,∃Jj (2.5)

• Error preservation: An error, absorbed into the signature Sj ⊕∆Sj , must
not be eliminated by an error-free justifying signature (∆Jj

= 0). It would
otherwise not be possible to arbitrarily delay the actual checking.

Sj+1 ⊕∆Sj+1 = u(Sj ⊕∆Sj
, Jj), ∀∆Sj

6= 0→ ∆Sj+1 6= 0 (2.6)

• Invertibility: Given Sj+1 and Sj , it must be possible to efficiently compute
the justifying signature Jj .

Jj = u−1(Sj , Sj+1), ∀Sj ,∀Sj+1 (2.7)

A simple function which fulfills all those requirements is the binary xor function.

2.2. Control-Flow Integrity in the Setting of Fault Attacks 22

Table 2.1: Performance (min(q) ∀t = [1, 50], ∀∆Ij , ∀∆Ij+t) of different polynomials.
The polynomials are given in reversed representation.

Type Polynomial min(q) t

CRC-8 0xAB 2 11
CRC-16-ARINC 0xD405 4 10
CRC-16-CCITT 0x8408 4 1
CRC-16-CDMA2000 0xE613 4 32
CRC-16-DECT 0x91A0 2 15
CRC-16-T10-DIF 0xEDD1 4 7
CRC-16-DNP 0xA6BC 2 9
CRC-16-IBM 0xA001 4 1
CRC-32 0xEDB88320 7 11
CRC-32C (Castagnoli) 0x82F63B78 8 2
CRC-32K (Koopman) 0xEB31D82E 6 34
CRC-32Q 0xD5828281 8 2
MISR-32 0xEDB88320 2 1

2.3. Prototype Implementation 23

2.3 Prototype Implementation
We implemented GPSA and CSM on the basis of a state-of-the-art microprocessor
architecture (an ARM Cortex-M3 compatible processor) and modern compiler
technology (LLVM). The resulting implementation supports all C language fea-
tures and common programming practices. Our prototype implementation is
therefore not only a theoretic construct, but practically usable. The implemen-
tation supports separate compilation of C files and enables the use of static
libraries. It also allows to randomize the signature values of identical programs
(diversity) on different devices. This makes it harder to extend attacks against
an individual towards multiple devices.

In this section, we discuss the necessary hardware modifications (which
are minimal), the necessary modifications of the to-be-protected software, and
elaborate on the modifications of the toolchain.

2.3.1 Hardware Architecture
The presented implementation is based on a clone of the ARM Cortex-M3
microprocessor architecture. Its performance-to-energy ratio makes this processor
an interesting candidate for many embedded application areas, including smart-
card applications. Hence, they are often used in malicious environments. The
processor uses 3 pipeline stages to implement the ARMv7-M instruction set that
supports both Thumb and Thumb-2 instructions.

As depicted in Figure 2.3, the processor was extended with a memory-mapped
signature monitor which is tightly integrated into the design. This monitor
automatically computes |S| = 32-bit signatures absorbing the 16–32-bit large
Thumb and Thumb-2 instructions Ij . The CRC-32C code has been implemented
as signature function based on the analysis presented in Section 2.2.1. Via the
memory interface, the monitor enables the Central Processing Unit (CPU) to
perform signature updates, signature replacements, and signature assertions.
Assertion failures can either trigger an interrupt or reset the system.

To support the automatic computation of derived signatures, the CPU only
had to be modified to forward the currently executed instruction to the monitor.
To perform continuous signature monitoring, the fetch unit of the processor was
modified. The signature bits are stored in a block at the end of the program.
The base address of this signature block has been embedded into the interrupt
vector table, similar like the initial stack pointer. At start-up, the base address
is automatically initialized. During run-time, the fetch unit always loads the
instructions in combination with the reference values. An instruction is only
forwarded to the decode stage, once both the instruction and the reference value
are valid.

2.3.2 Source Code Modifications
All signature modifications are performed in software, which in turn are monitored
by the derived-signature monitor in hardware. Performing the necessary software

2.3. Prototype Implementation 24

Cortex-M3

ExecuteDecodeFetch

ALU MUL/
DIV

Code
Addr.

CodeIn

Address

DataInRegister File

DataOut

Fetch
Controller

Address
Generation

Unit

System Address
Space

Signature
Monitor

RAM

Peripherals

Fetched
Instructions

Reference
Signatures
for CSM

Controller

f u

 signature

Figure 2.3: Simplified processor architecture with grey-shaded modifications.

transformations manually is a challenging and error prone task. It is clearly
favorable to automatically perform the transformations within the tool-chain,
which makes the whole instrumentation process transparent for the programmer.
Consequently, modifications of the application C source code are minimal. In
the best case, a to-be-protected software does not have to be modified at all.

The programmer can insert vertical signature checks as assert_signature()
function calls into critical sections of the program. All remaining work is per-
formed by the compiler which automatically replaces these function calls with
actual signature checks. The use of function calls for the annotation has the
advantage that clang, LLVM’s C front end, can be used without any modification.

Assembly code on the other hand requires a little more work (as usual). The
programmer has to place signature updates by hand when branches, loops, and
function calls are encountered. However, no actual derived signature calculation
has to be performed by the programmer. Additionally, if the programmer forgets
a signature update, the toolchain will automatically notify her.

2.3.3 Software Modifications
Related work [Aba+09; RCS02; RS05; ZS13] usually performs the software
transformations either during compilation or by applying a dedicated post-
processing tool after linking. In this work, both techniques are combined in order
to generate a protected executable. The compiler is responsible to insert signature
updates based on GPSA and to insert signature assertions. A post-processing
tool consecutively computes the derived signatures and patches the executable
with signature update and reference values.

LLVM Compiler Modifications. The compiler has been built using the
LLVM compiler infrastructure which already has great support for the targeted
ARMv7-M architecture.

2.3. Prototype Implementation 25

A machine function pass has been added to the ARM back-end in order to
perform the following transformations:

• Insertion of asserts: Every call to the assert_signature() function is
replaced by an actual vertical signature check. A signature check is per-
formed as a memory-write operation of the expected signature to a certain
pre-defined monitor address and is composed of three instructions. (LOAD
address, LOAD value, STORE value)

• Insertion of signature updates: Signature updates are inserted to make the
runtime signature independent of the executed path through the control-
flow graph. The placement of signature updates is performed efficiently by
computing the spanning tree of a function’s undirected control-flow graph.
Signature updates are, similar to checks, a write of the justifying signature
to the memory mapped monitor.

The smart placement of the machine function pass in the optimization pipeline
allows us to reuse much of the original compiler’s functionality and therefore
benefit from the available optimizations as well. Register allocation is for example
still handled using stock LLVM functionality.

An additional component which had to be adapted is the run-time library. The
compiler relies on its functions for standard operations (e.g., clearing memory)
or to perform computations which are not natively supported by the processor.
It was therefore necessary to instrument this library with justifying signature
updates to generate a working GPSA-hardened program.

Post Processing Tool. As a result, the compiler generates a binary with
all necessary signature updates/assertions that still lacks the correct signature
constants. The signature values can only be computed once the program is
linked and all instructions have been finalized. The compiler never has access to
this information in a traditional separate-compilation design-flow. We therefore
perform the derived signature calculation using a post-processing tool.

A recursive disassembling [ZS13] approach was used to recover the control flow
and the location of the signature constants. LLVM’s disassembling machinery
simplifies this step considerably. Based on the control flow it is possible to identify
the constant pools (i.e., constant islands) in the binary. Tracking the monitor’s
addresses using data-flow analysis techniques consecutively reveals the location
of the instructions which modify the signature values.

The actual calculation of the derived signatures relies on all this recovered
information. The signature values are computed by initializing each function
with a random initial signature, and consequently flooding the control-flow graph
of each function. As a result, all justifying signatures, assertion constants, and
reference signatures for the CSM are embedded into the executable.

Another feature of the post-processing tool is its static code analysis functional-
ity of the binary. Only correctly instrumented binaries pass the derived signature
calculation. Error messages notify a programmer about wrongly instrumented
assembly code.

2.4. Evaluation 26

2.4 Evaluation
As this is the first published, practical implementation of both GPSA and CSM
in the context of fault attacks, we are excited to report performance results based
on qualitative characteristics as well as practical benchmarks.

2.4.1 Error-detection Coverage
Based on the previously stated requirements on the signature functions, every
single fault on the instruction stream changes the runtime signature with certainty.
Using vertical checks, any runtime-signature error can be detected. On the
contrary, CSM checks hbits of the runtime signature per cycle. Therefore, the
probability to detect an error is 1 − 2−h. As any error propagates within the
signature register, the probability to detect an error is way beyond 99.9 % after
3 checks of h = 4bits.

If an attacker targets two instructions, she could possibly hide the error by
colliding the signature value. It was shown in Section 2.2.1 that the attacker
has to flip 32bits on average or 8 bits in his best case when a CRC-32C is used
as signature function. Even using advanced attack setups, the probability for
introducing a fault with precise bit-flips across multiple cycles is very low.

2.4.2 Error-detection Latency
An error can only be detected at the time of the vertical signature check when
GPSA is used without CSM. It is up to the programmer to insert these vertical
checks next to the critical pieces of code. This allows to perform very controlled
checks and consecutively reduces overhead. However, it is possible that, due to
bad check placement, vertical signature checks by itself detect an error once it
already has been exploited.

CSM solves this problem given that it checks parts of the signature register
after every executed instruction. With an increasing probability any error is
detected after a few iterations.

2.4.3 Monitor Complexity
One of our design goals was to only introduce minimal hardware overhead. All
operations beside derived signature calculation are performed entirely in software.
We evaluated the monitor complexity after synthesis for UMC’s 130 nm Low
Leakage process using Cadence 2009 tools. The standard cell library for this
process comes from Faraday. Without the monitor, our processor is 36,957Gate
Equivalent (GE)1 large. Adding the monitor for GPSA increases the size of the
processor by only 1469GE, respectively by less than 4 %. Adding support for
CSM additionally increases the size of the fetch unit which results in a total core
size of 39,319GE. The modifications to support GPSA and CSM therefore are
minimal and account to merely 6.4 % hardware overhead.

11 GE conforms to the area of a 2-input NAND gate with driving strength 1.

2.4. Evaluation 27

2.4.4 Memory Overhead and Processor-Performance Loss
Memory overhead and processor-performance loss highly depend on the executed
program. These characteristics are mainly determined by the number of branches,
function calls, and vertical signature checks.

Qualitatively speaking, a single signature update costs around 10 bytes of
memory and 6 cycles in our software-centered implementation. A function call
costs around 14 bytes of memory and 10 cycles. Using CSM, the introduced
redundancy is proportional to the size of the code within the text section of the
executable. For h = 4 per 16-bit Thumb instruction, up to 25 % of redundant
Non-Volatile Memory (NVM) has to be added.

For a quantitative, empirical evaluation, we tested multiple programs: a
coremark benchmark (one iteration), an AES-256 roundtrip (encryption followed
by decryption with check), and a 160-bit Elliptic-Curve Cryptography (ECC)
example performing a scalar multiplication with optional ASseMbly (ASM) op-
timized finite-field arithmetic. The coremark benchmark has been optimized
for speed (-02) given that this yields the best performance. The crypto al-
gorithms have been optimized for size (-0s). Additionally, link-time garbage
collection (-ffunction-sections -fdata-sections and -Wl,-gc-sections)
has been used to preserve only the absolutely necessary code and data segments.
A synthesizeable VHDL model of the hardware, evaluated using Cadence NC
Sim, has been used to execute the benchmarks.

The raw numbers and the relative overhead in terms of runtime as well as
Random-Access Memory (RAM) and NVM size are summarized in Table 2.2.
The evaluation was performed in two steps. First, our GPSA implementation
is compared against the unmodified LLVM backend which is used as baseline.
Second, CSM is compared with the GPSA version given that it extends GPSA’s
checking capabilities.

RAM. The RAM overhead of GPSA is below 10 % in all evaluated programs.
For coremark it is even merely 3 %. This overhead is solely a side effect of the
increased register pressure during function calls. The additional live variables
force the compiler to spill more values and therefore slightly increase the memory
usage on the stack. Using CSM on top of GPSA introduces no additional RAM
overhead given that the code itself stays absolutely unchanged.

NVM. Overhead on the NVM side ranges from 29 % for the AES test case to
79 % for ECC. This overhead is composed of the actual signatures (justifying
+ reference) and the added code for signature updates and vertical checks. In
this software-centered implementation, the majority of the overhead is code. The
signatures account for 25 % NVM overhead at most.

The NVM overhead of CSM over GPSA on the other hand is purely signature
based. Only minor optimization potential remains.

Runtime. The most remarkable figure in this evaluation is probably the run-
time overhead. The overhead of GPSA ranges from 2 % for optimized ECC to

2.4. Evaluation 28

Table 2.2: Empirical Results for GPSA and CSM regarding RAM, NVM, and run-
time overhead. Additionally, the NVM overhead solely for justifying and
reference signatures is given.

Program RAM NVM Runtime Justifying Reference
Byte Byte Cycle Signatures Signatures

Baseline
Coremark 2,444 9,384 547,294 — —
AES-256 248 3,212 48,581 — —
ECC 444 4,036 4,251,697 — —
ECC w/ ASM 400 4,824 2,836,180 — —

Overhead of GPSA (Relative to Baseline)
Coremarka 2.3 % 69.0 % 56.7 % 23.5 % 0.1 %
AES-256b 9.6 % 29.0 % 36.7 % 10.8 % 0.5 %
ECCc 9.0 % 78.9 % 33.3 % 24.5 % 0.3 %
ECC w/ ASM c 8.0 % 53.5 % 1.9 % 16.3 % 0.2 %

Overhead of CSM with h = 4 bit (Relative to GPSA)
Coremarka — 22.2 % 8.9 % — 22.2 %
AES-256b — 19.3 % 6.5 % — 19.3 %
ECC c — 21.9 % 7.6 % — 21.9 %
ECC w/ ASM c — 22.6 % 0.4 % — 22.6 %

aOne vertical signature check before and one after the benchmark.
bOne vertical signature check after every round of AES.
cOne vertical signature check after every processed bit of the scalar.

2.5. Conclusion 29

1 2 4 8 16
0

5

10

15

20

h-bit Horizontal Signature

Ru
nt
im

e
O
ve
rh
ea
d
[%

]

Coremark
AES-256
ECC

ECC w/ ASM

Figure 2.4: Runtime overhead of CSM with different horizontal signature sizes (h-bit).
(Relative to GPSA)

57 % for coremark. The software-centered approach taken in this implementation
is again one of the reasons for these high values. Each GPSA operation takes
between 6 and 10 cycles. Adding more hardware support could bring this values
down to around 2 cycles. However, even without additional hardware much better
results can be achieved. The 31.4 % difference between the ECC programs show
that there is still a lot of optimization potential on the compiler side as well.
Implementations of cryptographic primitives should be protectable at hardly any
cost given that their control flow is typically very sequential.

Enabling CSM on top of GPSA implies an additional overhead of up to 9 %.
However, this is rather low considering that horizontal signatures with 4-bit (25 %
redundancy per instruction) are used. Figure 2.4 shows how the runtime overhead
of CSM scales in dependence of the horizontal signature size h. Most astonishing
is probably that the overhead is still below 21 % even at 100 % redundancy (16-bit
per instruction). The processor’s Harvard architecture and the combination of
32-bit bus and 16-bit instruction set makes this possible.

2.5 Conclusion
We extended the CFI concepts of Wilken and Shen from the soft error to the
fault attack context in this work. To achieve this goal we not only analyzed the
functional requirements for derived signature calculation, but also performed an
evaluation of actual signature functions. Using a CRC with suitable polynomial,
any error in a single cycle and at least 7 bit-flips, spread across two cycles, can
be detected with certainty.

We further practically implemented the derived signature based GPSA and

2.5. Conclusion 30

CSM techniques for a state-of-the-art processor. Additionally, a toolchain for
this platform has been created utilizing the LLVM compiler infrastructure. This
toolchain incorporates all necessary transformations and is completely transparent
for the programmer. As a result, arbitrary C programs can be protected by
simple compilation. The design’s low hardware overhead and the good detection
capability indicates that the combination of GPSA and CSM is well suited to
protect the control flow in the context of fault attacks.

However, GPSA is capable of providing even stronger guarantees. In the
following chapter, we extend the provided protection of GPSA into the software
attack context. Moreover, we evolve CSM to not only check that the code and its
control flow are genuine but to prevent the controlled execution of manipulated
code in the first place.

3
Sponge-Based Control-Flow Protection

for IoT-Devices

Fault attacks against processors, as thematised in the previous chapter, are a
huge threat to any embedded device and need to be mitigated. However, modern
Internet-of-Things (IoT) devices—ranging from consumer products in smart
home environments, over sensor nodes in modern cars, to control units in critical
infrastructures—face numerous additional security challenges that have to be
addressed too. The prevalent Internet connection of IoT devices, for example,
gives rise to remote software attacks on their exposed interfaces. Attackers can
try to find and exploit software vulnerabilities in these interfaces to take control
over IoT devices via code injection or code reuse attacks, like Return-Oriented
Programming (ROP) [Sha07] and Jump-Oriented Programming (JOP) [Ble+11].

To prevent these types of software attacks, different countermeasures have
been proposed, such as Data-Execution Prevention (DEP), return stack pro-
tection [Cow98; FPC09; Kuz+14], software diversification (e.g., Address Space
Layout Randomization (ASLR) [PaX01; Sha+04]) and Control-Flow Integrity
(CFI) [Aba+09]. To protect the authenticity and confidentiality of Intellectual
Property (IP), encryption and authentication of software binaries and Random-
Access Memory (RAM) can be used. Finally, to counteract physical fault attacks
on the control flow of the processor, countermeasure similar to our Generalized
Path Signature Analysis (GPSA) scheme (see Chapter 2) have to be deployed.

Unfortunately, current embedded devices hardly implement any of these
countermeasures. Moreover, existing countermeasures work well for their original
purpose in isolation, but for each of them, some of the attacks on IoT devices
remain feasible due to the vast amount of different attack vectors. As a result,
a variety of different countermeasures have to be deployed which can inhere

31

32

significant overheads that are impractical for lightweight embedded devices.
Finally, the security analysis of combinations of countermeasures can also become
highly complex.

Novel countermeasures, that by themselves can counteract a combination
of software and physical attack vectors, are needed for such hostile environ-
ments. SOFIA [Cle+16; Cle+17b] was the first presented approach that fits
this category of countermeasures. By encrypting, authenticating and chaining
blocks of instructions using a stream cipher and Message Authentication Code
(MAC), SOFIA yields CFI as well as confidentiality and authenticity of software.
However, although SOFIA is reasonable efficient, memory and runtime overhead
are far from optimal due to the execution-block oriented design. Also the reset
triggered by the dedicated MAC verification—while beneficial for immediate
error detection—is a single point of failure.

Contribution. As an alternative approach to SOFIA, we present Sponge-Based
Control-Flow Protection (SCFP), a hardware-supported CFI scheme that enforces
the confidentiality and authenticity of software at execution time. SCFP is based
on our experience with GPSA and is well suited for IoT devices due to its low
memory and runtime overhead. The involved hardware extension continuously
decrypts and authenticates instructions at the latest possible point before the
processor’s decode stage. SCFP relies on cryptographic sponge constructions to
encrypt and authenticate software binaries with instruction-level granularity.

The use of sponge-based authenticated encryption in SCFP yields fine-grained
control-flow integrity and thus prevents code reuse attacks. By keeping the
software encrypted throughout all memory, SCFP completely thwarts code
injection attacks from within software, and effectively protects the IP of software
vendors. By decrypting instructions right before the decode stage of the processor,
SCFP resists tampering with code in memory, physical attacks on memory like
rowhammer [GMM16; Kim+14], and fault attacks that manipulate control flow or
instruction encodings. SCFP supports interrupt handling and is thus compatible
with operating systems.

SCFP also offers strong fault resistance without requiring an explicit verifica-
tion step that can potentially be bypassed using controlled faults. In particular,
any globally induced physical fault on the processor chip destroys the internal
SCFP state with high probability and leads to the execution of random instruc-
tions. Random code execution is a secure processor state, because it is hard to
control and exploit for an attacker, and has a low probability of being meaningful.
Nevertheless, timely detection of random execution is also supported.

SCFP is a highly flexible tool. We hence present two suitable sponge con-
structions as well as three different SCFP instances for different applications.
First, Authentic-Encrypted Execution (AEE) provides all security features at
cryptographic levels of security, i.e., above 80 bits. Second, AEE-Light reduces
memory overhead in trade for reduced software authenticity by using keyed
permutations. Third, Infective Execution (IE) is a very lightweight CFI scheme
to solely protect against code reuse and physical fault attacks on the control flow.

3.1. Overall Concept 33

For demonstration, we integrated AEE-Light with a RISC-V microcontroller
and evaluated a set of benchmarks on this chip by executing them both unpro-
tected and encrypted with AEE-Light. It shows that the average overheads in
code size and execution time of our AEE-Light instance are 19.8 % and 9.1 %,
respectively, and thus practical for many IoT scenarios. In terms of hardware
complexity, 35 % of the Central Processing Unit (CPU) core area has been de-
voted to SCFP support and power consumption is increased by 25 %. Note,
however, that for a full chip with AEE-Light support, overhead numbers are
much smaller due to the integrated peripherals and memory (e.g., caches).

Outline. This chapter is organized as follows. Section 3.1 describes the concept
of SCFP and the application of authenticated encryption to the instruction stream.
Section 3.2 gives two sponge modes suitable for SCFP and Section 3.3 presents
different SCFP instances and their security properties. Section 3.4 discusses how
SCFP was integrated into the RISC-V processor Remus and details the necessary
extensions to the RISC-V Instruction-Set Architecture (ISA). Section 3.5 gives
evaluation results and Section 3.6 concludes this chapter.

3.1 Overall Concept
Sponge-Based Control-Flow Protection (SCFP) is a novel security concept for IoT
devices that is based on authenticated encryption from cryptographic sponges.
In this section, we introduce the threat model we assume for IoT devices and
present the architecture of SCFP. In particular, we describe how sponge-based
authenticated encryption is applied to an instruction stream and discuss the
adaptions required to support arbitrary code execution including control-flow
transfers and interrupts.

3.1.1 Threat Model and Assumptions
This work considers IoT devices which are threatened by both software and
physical attacks. In terms of software vulnerabilities, we assume a remote attacker
who has arbitrary read and write access to the memory due to bugs in the software.
Correspondingly, active physical attackers are assumed to have direct access to
the device. This direct access can be used to dump and manipulate external
memory, to probe and force signals on the Printed Circuit Board (PCB) (e.g., bus
signals between chips), or to inject global faults into the system (e.g., clock
glitches). On the other hand, micro probing and similar invasive techniques are
considered out of scope in this work. Similarly, side-channel leakage of hard- and
software implementations is not considered in this work.

Presumed targets for adversaries in this domain are to extract secret IP
(e.g., firmware code), to bypass security checks (e.g., by skipping one or more
instructions), or to achieve arbitrary code execution via code reuse or injection. In
other words, adversaries try to compromise the confidentiality and/or authenticity
of the code, either at rest or at runtime. Note, however, that Denial-of-Service

3.1. Overall Concept 34

Processor

FetchFetch Decode Execute Memory
Write
Back

Memory (RAM/Flash)

I-Cache D-Cache

Register File

State

AE
Decrypt

Figure 3.1: High-level system architecture of a classic RISC processor which has been
extended for SCFP with a sponge-based AE decryption stage.

(DoS) as well as data-driven attacks are out of scope given that neither can be
solved via a CFI scheme.

This work assumes that SCFP is deployed as the only countermeasure to the
mentioned threats. Hence, if guarantees that exceed the capabilities of precisely
enforced CFI (e.g., resistance against control-flow bending [Car+15]) are required,
additional attack mitigation techniques (e.g., safe stack [Kuz+14]) have to be
utilized. Further, note that the hardware interface of SCFP is implemented in
such a way that there is no interface to access plaintext instructions, the sponge
state or internal SCFP signals. All this information is inaccessible in software.

3.1.2 Architecture
The idea behind SCFP is to encrypt programs at compile time using a sponge-
based Authenticated Encryption (AE) cipher. Decryption is then performed
within the CPU, instruction by instruction, just in time for execution. At its heart,
the sponge-based AE cipher uses an internal state z, which provides the foundation
for the CFI protection in SCFP. This state accumulates information about all the
processed instruction ciphertexts, which enforces that correct decryption is only
possible iff all previous instructions have also been genuine. Conceptually, with
every processed instruction ciphertext C, the plaintext instruction P as well as a
new internal state are derived using a permutation f following (P |z) = f(C|z).
As a result, the correctness of the plaintext instructions that get executed by the
CPU does not only depend on the fetched input (i.e., ciphertext), but also on the
history which has been accumulated within the internal state of the cryptographic
primitive.

If either the state (e.g., through a CFI violation or clock glitch) or the
ciphertext (e.g., through manipulation in memory) is erroneous, correct decryption
is not possible anymore and pseudo-random instructions are produced as plaintext.

3.1. Overall Concept 35

We consider the respective execution of random instructions a secure processor
state for two reasons. First, the probability of random code which is generated
by SCFP to be meaningful is extremely low, especially when attack gadgets of
multiple instructions are required. Second, attackers neither have control over
the random instructions being executed, nor can attackers directly observe what
the plaintext instructions are during random execution. This effectively hampers
any attacker attempts to execute harmful code. Besides, we will later show that
SCFP supports the detection of random code execution to add error handling as
desired.

From a processor architectural point of view, the ideal location within the
processor pipeline for performing the decryption is between instruction fetching
and decoding, as shown in Figure 3.1. The instructions are transferred from the
fetch to the decode stage exactly in the execution sequence, which also matches
the desired decryption sequence of SCFP. As the decode stage is the first to need
plaintext instructions, performing decryption right in front of the decoder is in
fact also the latest possible point for inserting SCFP and effectively minimizes
the number of components with plaintext code access to the decode stage itself.
All the other components, like peripherals, main memory, various caches, memory
buses, and even the fetch unit, operate on encrypted code only.

Figure 3.2 depicts the instruction-data dependencies between the different
pipeline stages for the processor from Figure 3.1. A traditional scalar processor
with a pipelined architecture only has dependencies between the different stages
(visualized horizontally) but not across multiple instructions (visualized vertically).
The processor basically decodes each instruction completely isolated from other
instructions. Dependencies between instructions are solely a result of data
dependencies in the program (e.g., via the register file) which can lead to pipeline
hazards and stalls. Extending the pipeline with an AE decryption unit breaks
this isolation between instructions and introduces an additional dependency via
the cipher state.

For scalar processors, it is additionally possible to feed the data independent
decoder signals of each executed instruction back into the cipher. Such feedback
extends authenticity protection up to the pipeline’s execute stage and can,
for example, be used as a link to fault countermeasures in the ALU. Note,
however, that the SCFP approach is not limited to scalar processors. Superscalar
microarchitectures can also be protected using SCFP with a coarser granularity,
e.g., decrypting multiple instructions instead of individual instructions in one
block.

3.1.3 Authenticated Encryption and Control Flow
Sponge-based authenticated encryption schemes use a single internal cipher state
for both encryption and authentication. This common state leads to the nice
property that the mapping between each encrypted and plain instruction depends
on the actual values of all previously processed instructions. Hence, to be able to
encrypt a program such that it can be executed on a processor that implements
SCFP, the exact sequence of executed instructions needs to be known at compile

3.1. Overall Concept 36

Decode Execute

Decode
AE

Decrypt

State

Cipertext

Patch

Decoder Signals

Cipertext

Patch

Plaintext

Plaintext

AE
DecryptFetch

Fetch

Figure 3.2: Data dependencies between two consecutive instructions within a processor
pipeline when SCFP is implemented. The decoder signals can optionally
be fed back.

time. However, exactly this property makes the combination of authenticated
encryption with control flow challenging.

More concretely, at compile time, the exact instruction sequence can only
be determined for a very limited number of programs. Basically, only programs
that have a completely data independent control flow (e.g., no data dependent
branches) can be trivially supported. Additionally, even genuine and intended
code reuse (e.g., loop bodies or functions) is not easily possible anymore. This is
due to the fact that after encryption, the ciphertext is fixed and correct decryption
of an instruction is only possible given the correct unique cipher state (and thus
execution history). Placing the sponge-based authenticated encryption scheme
into the processor pipeline therefore provides a solid foundation for SCFP and
thwarts code reuse by default.

The main idea to allow specific code reuse in SCFP and to make SCFP appli-
cable to general programs is to deliberately introduce collisions into the internal
state of the cryptographic primitive. These state collisions are conceptually a
white listing of permitted control flow transfers and have to be introduced exactly
at the required positions in a program. Note however that, in general, we want to
have as little collisions as possible since they weaken the cryptographic primitive.

The simplest and most efficient way to generate the required state collisions
is to inject additional metadata as correction terms into the cipher state at
certain points during the execution of the program. We denote this process of
deliberately adjusting the AE state as patching and the involved constants as
patch values. Via patching, we effectively cancel out divergences in the cipher
state which originate from taking different valid paths through the Control-Flow
Graph (CFG). As the result, correct decryption of a program under SCFP is
only possible as long as the execution adheres to the statically determined CFG.

It has to be noted that patching must be implemented as a differential update
of the AE state. Otherwise, if patching was implemented by simple replacement,
patching would destroy all the history which had been accumulated into the
state. Besides, the patching process must be able to modify the full sponge state
in order to create arbitrary collisions.

3.1. Overall Concept 37

A

B

D

C
Patch

Branch

Figure 3.3: Simple example of patching the CFG of an if-then-else construct in SCFP.

3.1.4 Patch Handling, Placement and Calculation
The patch values in SCFP are conceptually very similar to the justifying signatures
in the soft error and fault attack countermeasures based on Continuous Signature
Monitoring (CSM) [WS90; WWM15]. Therefore, also similar implementation
techniques can be used to find suitable patch locations as well as to determine
the concrete values of the patch constants.

More concretely, the task of the patch values in SCFP is to introduce cipher
state collisions at the merge points in the CFG of the program. Hence, all
differences which originate from traversing the statically determined CFG along
runtime data dependent paths have to be compensated. An example for patching
a simple if-then-else construct is shown in Figure 3.3. There, a patch value is
injected into the cipher state before the execution of Basic Block (BB) C (i.e.,
on the red CFG edge) such that the state at the beginning of BB D is the same,
regardless of whether the blocks A and B, or the blocks A and C (incl. the patch)
have been executed.

The exact way how such a patch value is encoded into the program and
how patches are processed during runtime strongly depends on the concrete
implementation of SCFP and is highly ISA specific. However, an intuitive way to
implement and think about cipher state patching is to consider the patch values
as part of specialized control-flow instructions. Similar to immediate operands in
standard instructions, the patch values are part of the instruction encoding and
get fetched like regular code by the processor during execution.

From the toolchain perspective, implementing SCFP consists of two steps.
In the first step, during compilation, patches have to be inserted at the correct
positions into the program by emitting suitable instructions with patch support.
In the second step, at link time or in a post processing phase, the program binary
has to be encrypted and the correct patch values have to be inserted into the
binary (i.e., similar to relocations).

For a program which comprises only branches and direct calls, a functional
solution for patch placement can be obtained by looking at the undirected CFG

3.1. Overall Concept 38

Function A

A1
B

A2

PatchA

Call

Return

Function C

C1

C2

PatchC

Call

Function B

Figure 3.4: Example of a simple patching convention for direct function calls. Function
B can be called from both, function A and C.

of the full program. Every cycle in this graph has to be broken by introducing
a patch for the cipher state. Therefore, the minimum number of patches and
possible positions can be obtained by comparing the CFG with its spanning tree.
Taking the function call graph into account, this approach is also applicable
to indirect and recursive function calls. Unfortunately, quite expensive whole
program analysis has to be performed to acquire the mentioned graphs.

Nevertheless, also compilation in multiple translation units can be supported
with SCFP when a well-defined patching convention is established around function
calls. Similar to a regular calling convention, having a patching convention allows
to correctly place patches in every function of the program in isolation. Within
each function, it is then typically sufficient to always patch when a branch is
taken as shown in Figure 3.3. Additionally, to cope with recursion, it has to
be ensured that at least one patch is performed before the recursion is entered.
Note, however, that the simplicity of the patching convention, compared to the
graph based approach, comes at the cost of an increased number of patch values.

To illustrate the concept, in the following, an exemplary patching convention
for direct and indirect function calls is presented.

Direct Calls

Every function which gets directly called from more than one call site within a
program necessarily requires patching. In particular, at least n− 1 patches are
required when n call sites exist. Interestingly, this situation is also similar to the
direct branch example in Figure 3.3 where one patch is required since two paths
in the CFG lead to BB D. However, placing patches at every call site except
one again requires access to the full program during compilation. To relax this
constraint, at the cost of one additional patch per function, patching can simply
be performed on every call site as shown in Figure 3.4. In this example, PatchA

has to be applied when the control flow returns from function B to function A.
Returning from function B to C uses PatchC , respectively.

3.1. Overall Concept 39

Note that, in most cases, having one patch per direct call is sufficient regarding
both functionality and security, because typical ISAs perform direct calls relative
to the program counter. In this case, the program counter relative offset is part
of the function call encoding and is different for each call site. This implies a
different, internal SCFP state for each call site. As a result, besides the required
state collisions at the call and return edges of the direct function call, there are
no other, undesired collisions being introduced to the program.

In general, it does not matter whether the patch value is applied at the return
operation or the call operation, as long as it is done consistently and aligned
with the way branches are patched. Applying patches is therefore possible either
after branches and on returns (as shown in Figure 3.3 and Figure 3.4), or before
merge points of branches and during calls.

Indirect Calls

Similar to direct function calls, also indirect function calls require patching.
However, determining the exact function which gets called at runtime by an
indirect function call is not always possible at compile time. Moreover, often
also multiple different functions get called from the same indirect call site during
the runtime of a program (e.g., comparison callback of qsort). Therefore, the
best one can do with static CFI such as SCFP is to determine a, possibly over
approximated, set of potential call targets and to enforce that only calls to
functions in this set are possible at runtime.

Our current approach to implement indirect function calls and returns with
SCFP is shown in Figure 3.5. In total, two patch values have to be applied
on every indirect control-flow transfer. The idea of this scheme is to use the
first patch (e.g., PatchA1) to reach a constant cryptographic intermediate state,
which is then updated to the actual entry state of the called function using the
second patch value (e.g., PatchD1). The constant intermediate state can be
freely chosen at encryption time and permits to restrict indirect calls to targets
which were encrypted for the same intermediate state.

In summary, for the patching convention in Figure 3.5, two patch values are
required for every indirect function call site as well as for every function which
can be called indirectly. At runtime, in total four patches get applied for every
indirect function call.

At the first glance, using four patch values for one indirect function call may
seem excessive given that two patches would already suffice to build a functioning
CFI scheme. However, using less patch values necessarily introduces undesired
collisions into the SCFP state which weakens the confidentiality and authenticity
properties of the scheme.

3.1.5 Initial State Derivation
In sponge-based AE ciphers with known permutation, the initial state is compa-
rable to the key in regular encryption schemes. It is common to derive this initial
state zI from a secret key k and public nonce N by applying their permutation

3.1. Overall Concept 40

Function A

A1

D

A2

PatchA1
ICall

Return

Function C

C1

C2

PatchC1
ICall

Function D

PatchA2

PatchD1

PatchD2
PatchC2

E
Return

Function E

PatchE1

PatchE2

Figure 3.5: Example of a simple patching convention for indirect function calls. Func-
tions A and C can call both, functions D and E at runtime.

f (e.g., zI = f(N |k)). Conceptually, we recommend using a similar approach for
deriving the initial state in SCFP. This ensures that, even when k is a device-
specific fixed master key, every program for that device is still encrypted under a
different initial state. Optionally, additional information like the start address or
the program vendor can be used during the derivation of the initial state.

Note that binding initial states to the machine key also serves as software
diversification. Namely, in case successful exploits against SCFP should be found
in a program on a certain device, they cannot simply be transferred to other
devices executing the same program.

3.1.6 Interrupt Handling
Unlike regular function calls, which are performed at precisely defined points
during program execution, interrupts can occur at any point in time. It is
therefore impossible to determine a unique differential update value for all the
states which permit to call an interrupt handler. We cope with this problem in
SCFP by treating interrupt handlers similar to the initial program entry point.
Therefore, we derive a new AE cipher state to re-initialize SCFP when entering
the interrupt handler. On the other hand, the SCFP state that is active before
entering the interrupt handler is, similar to the old program counter, saved in an
internal processor register. For the operating system, the SCFP state is therefore
simply one additional register which has to be saved and restored during context
switches. Note however that, to ensure that the confidentiality of the SCFP state
is maintained at all times, the old state value which is stored in the processor
register should be encrypted or similarly protected.

Implementing interrupt handling in this way effectively separates the protec-
tion of interrupt handlers from the regular code. This means that interrupts can
be processed successfully even when a regular program executes pseudo random
instructions due to an attack. On handler entry, this separation is desirable as it
allows us to recover from errors in software as well as to perform scheduling of

3.2. Sponge Constructions for SCFP 41

programs via the operating system. On handler exit, on the other hand, we want
to propagate errors occurring during the execution of the interrupt handler into
the execution of the regular code.

We achieve this behavior by enforcing that the internal SCFP state has a
predefined secret value when returning from the interrupt handler. Similar to the
state derivation on interrupt entry, the secret handler exit state can, for example,
again be computed from the key, the nonce, and the address of the interrupt
handler. When returning to the regular code execution, the hardware can then
simply combine the current state z, the expected exit state e, and the state from
before the interrupt entry zentry from the register (e.g., z = z ⊕ e⊕ zentry). By
doing so, the entry value is only restored (z = zentry) correctly if also the handler
execution has been genuine (z = e).

3.1.7 Fast Error Recovery
As SCFP ensures security even without explicit fault checks, SCFP eliminates
the existence of a single point of failure. Namely, the probability of random code
execution in SCFP to be meaningful is extremely low. While this is one major
benefit of SCFP, it may still be desirable to provide a timely way to perform error
recovery after the processor started to execute a random instruction sequence.
Interestingly, the execution of pseudo random instructions in the error case
already provides one way to permit error recovery given that most processors are
able to identify invalid instructions. The concrete detection probability follows a
geometric distribution and can be computed when the ISA of the processor is
known. More concretely, given the probability pinv for a random instruction to
be invalid, the expected detection latency l is computed as l = 1/pinv. However,
considering that modern ISAs are often quite dense, recovery latency can be
comparably high.

Faster recovery can be achieved when additional redundancy bits are verified
on the execution of every single instruction. Sponges permit to implement this
additional integrity verification in an efficient and secure way by simply checking
the desired amount of state bits. No additional permutation calls, but only a
marginally bigger permutation is required. The strength, i.e., the number of bits,
for this verification can be freely chosen, but is typically rather weak for a single
instruction. However, the continuous nature of this check compensates for this
weakness quite fast. In general, the number of asserted bits allows to trade off
between the code size overhead and the recovery latency.

3.2 Sponge Constructions for SCFP
SCFP relies on a scalable and strong sponge-based authenticated encryption
cipher. This section introduces two eligible sponge-based constructions and
presents arguments for their security as well as guidelines for parameter selection.

3.2. Sponge Constructions for SCFP 42

C
0

f f

P
0

Patch
0

C
1

f

P
1

Patch
1

r
0
'

x
0
' x

1

r
1

x
2

r
2

r
1
'

x
1
'

Figure 3.6: Decryption using a duplex construction similar to the one used in
SpongeWrap.

3.2.1 Constructions
Cryptographic sponges have become quite popular since Keccak has been an-
nounced as the winner of the SHA-3 competition. However, sponges can also be
used to build other cryptographic primitives. The Keccak designers themselves,
for example, already proposed an AE mode called SpongeWrap [Ber+11a] early
on and further pursued the idea with Keyak [Ber+16b] and Ketje [Ber+16a] in
the CAESAR competition [Ber19]. The sheer number of sponge-based submis-
sions [AJN16; And+16; Dob+16; Gli+15; Mor+15; SB15] to the competition
underlines the potential of this research direction. Additionally, Ascon [Dob+16]—
one of the sponge-based designs—has been selected for the final CAESAR portfolio
in the lightweight category.

Considering the success and general properties of sponges, the following
discusses two sponge-based constructions which have been adapted to support
the patching of SCFP. This approach allows us to profit from the substantial
amount of cryptanalysis performed on the various sponge constructions and the
underlying permutations. In general, we therefore recommend well-analyzed
permutations like Keccak-p. However, a more detailed discussion on suitable
instantiations of SCFP, including permutations, can be found in Section 3.3.

SpongeWrap-like Decryption Mode

The first construction, shown in Figure 3.6, is based on the duplex construction,
which has been introduced and proven to be secure in [Ber+11a]. This duplex
construction is used in SpongeWrap for both encryption and decryption. When
executing strictly sequential code, where no patching is required (Patchi = 0),
AE on the instruction stream is identical to SCFP. However, for generic code
SCFP must also implement branching. Therefore, additional support for the

3.2. Sponge Constructions for SCFP 43

injection of patch values has to be added to the construction. Both the rate and
the capacity of the sponge make up the previously described SCFP state z and
must be modifiable by such a patch.

From the security point of view, these patch values can be considered as
Associated Data (AD). AD means data that is authenticated, but not encrypted.
It has been shown by Mennink et al. [MRV15] as well as Sasaki and Yasuda [SY15]
that it is secure to absorb AD into the capacity of a keyed sponge. Considering
that the construction in Figure 3.6 is a keyed full-state duplex sponge construction,
it is therefore secure to inject the patch values into the capacity. Updating the
rate with the patch is secure as well given that the rate is under the control of
an attacker via the ciphertext in any case.

The SpongeWrap-like construction has two neat features. First, its implemen-
tation is comparably simple since encryption is identical to decryption. Second,
the construction provides great flexibility as it permits to calculate and place
patch values on arbitrary places in the CFG. However, there are also some
drawbacks which have to be considered. For example, an attacker might be able
to precisely control the first fault given that errors in the ciphertext directly
propagate into the plaintext (∆Ci = ∆Pi). In a known plaintext attack, this
might even permit to inject one specific instruction before the plaintexts of
subsequent instructions are randomized.

Note also that, if the control-flow merges at instruction i and patches are not
applied directly before the merge point in the control-flow graph (i.e., Patchi−1 =
0), all instructions directly preceding the merge point (Pi−1) have to be identical.
This is due to the fact that, as soon as the instruction at the merge point is fixed
(i.e., Pi and Ci), also the plaintext of the predecessor Pi−1 is determined by the
dependency over the rate part of the sponge (Pi = Ci⊕ fr(Pi−1|x′i−1)). However,
this link can be broken by performing patches solely at merge points of the CFG
instead of placing them freely.

APE-like Decryption Mode

The second construction is inspired by another AE-mode of operation called
Authenticated Permutation-based Encryption (APE) [And+14]. The layout of
the APE construction itself is similar to the duplex construction in SpongeWrap.
However, APE is not inverse free, i.e., the inverse permutation f−1 is needed for
encryption when the permutation f is used for decryption. Moreover, the indices
of the cipher- and plaintexts have been rearranged compared to SpongeWrap.
Namely, in APE, the plaintext Pi, corresponding to a ciphertext Ci, is calculated
as Pi = Ci+1 ⊕ fr(Ci|xi).

The APE-inspired mode we propose in Figure 3.7 is calculated as Pi =
fr(Ci|xi) and modifies APE in two ways. First, Pi’s dependency on Ci+1 is
removed. This solves the problem of the SpongeWrap-like mode where attackers
can inject one specific instruction if they know the original value. Moreover,
this modification makes our construction behave more like a block cipher than a
stream cipher. Second, patching capabilities for the capacity are introduced to
make the construction suitable for SCFP. Note that the APE-like construction

3.2. Sponge Constructions for SCFP 44

P
0

f f

C
1

Patch
0

f

P
1

C
2

Patch
1

x
1

x
0 x

2

C
0

x
0
' x

1
'

Figure 3.7: Decryption in an APE-like construction.

is superior to the SpongeWrap-like mode in this regard. It only needs patching
of the sponge’s capacity which corresponds to the SCFP state z. On the other
hand, the sponge rate is not chained any more.

The main drawback of the APE-like construction is that it is less flexible,
because the position of patches is fixed. Patches always have to be positioned
at branching points in the control-flow graph. This is a result of the encryption
that has to be performed in inverse direction to the decryption (i.e., inverse to
the execution sequence).

3.2.2 Parameter Selection
It has been shown that the duplex construction [Ber+11a] as well as the APE
construction [And+14] are secure against generic attacks which do not exploit
properties of the underlying permutation. The complexity of such attacks is
lower bounded by 2x/2 and depends on the capacity size x. To provide s-bit
security, x must thus be chosen as x ≥ 2 · s.

The size of the sponge rate depends on the actual implementation. The
majority of the rate is needed for the decryption of the instructions. The
instruction size i depends on the ISA and is typically 16 or 32 bits. However,
additional bits may be used for fast error recovery. To enable fast error recovery
of n bits without leaking parts of the plaintext nor reduction of the security, a
rate of r = i+ n bits, and a permutation size of b = i+ n+ x bits is needed.

The proofs in [And+15; Ber+11b] show that also smaller capacity sizes can
result in cryptographic security. They can be used to reduce the permutation
size while maintaining the security level, or to increase the security of a fixed
permutation. However, a limit on the data complexity, which strongly depends on
the implementation, is required to utilize these refined proofs. We therefore refrain
from proposing parameters based on the proofs in [And+15; Ber+11b] and leave
the exploitation to implementers knowing the respective system characteristics.

3.3. Instantiations 45

3.3 Instantiations
The flexibility of SCFP allows to tailor its protection level to the needs of the
respective application by choosing a suitable permutation for the sponge-based
AE scheme. In this section, we hence introduce three different instantiations
of SCFP. First, AEE uses a large, unkeyed permutation to yield confidentiality
and authenticity of the program binary as well as CFI to prevent fault, code
reuse, and code injection attacks. Second, IE uses a small, unkeyed permutation
to form a lightweight CFI scheme to prevent code reuse and fault attacks only.
Third, the use of a small, keyed permutation in AEE-Light yields small overhead,
CFI and IP protection in trade for weaker authenticity. We first discuss the
properties of unkeyed permutations used in AEE and IE, and then proceed with
keyed permutations utilized in AEE-Light.

3.3.1 Unkeyed Permutations
When instantiating SCFP with unkeyed permutations, the cryptographic security
properties of SCFP are solely determined by the size of the sponge capacity
x. Neglecting the proofs in [And+15; Ber+11b], a security level of sbits re-
quires a sponge capacity of 2sbits. However, these are generic results without
consideration of the actual application.

In particular, the cryptographic security level s is mainly determined by
collisions in the cryptographic state. These can generically be exploited in Time-
Memory Trade-Off (TMTO) attacks with birthday bound complexity 2x/2 and
eventually allow state recovery and thus IP theft or forgery. However, to perform
these TMTO attacks, the attacker must also be able to observe the output of the
sponge, which is not the case for SCFP. Namely, the instructions decrypted by
SCFP are internally processed by the processor and never directly revealed to the
attacker. As a result, the complexity for state recovery for SCFP is 2x in practice.
In a similar way, the probability of arbitrary state collisions in a binary encrypted
and authenticated with SCFP is in general determined by the birthday bound,
i.e., 2−x/2. However, attackers do not have access to the decrypted instructions
and the internal state when using SCFP. Attackers are thus unable to observe
and detect internal state collisions. Hence, meaningful exploitation of internal
state collisions for SCFP is equivalent to state recovery and has complexity 2x

as well.
Software Attack Complexity. These considerations have a significant

impact on the actual attack complexities for code injection and code reuse attacks
when SCFP is in place, i.e., the CFI properties of SCFP. Namely, attackers
performing code injection or code reuse attacks require precise control over the
executed instructions to succeed. For example, attackers can modify a single
instruction with success probability 2r, but will neither be able to observe whether
they hit the right instruction, nor be able to modify the internal state such that
all successive instructions remain the same. This means that the attacker must
adapt all successive instructions too, because the processor will otherwise execute
random instructions. However, precise manipulation of n instructions has even

3.3. Instantiations 46

higher complexity, namely 2n·r. Alternatively, attackers can try to learn the
internal state to correctly encrypt and inject their own program. However, this
has complexity 2x. A different example are modified jump targets in code reuse
attacks. As attackers manipulate addresses to jump to well-defined instructions
in the binary, the x-bit patch values must be adapted accordingly. However,
finding a correct patch value has complexity 2x too.

Fault Attack Complexity. The CFI properties of SCFP also increase the
attack complexities for fault injection attacks that manipulate control flow or
instructions prior to the decode stage. For example, simple instruction skips or
repetition have a success probability of 2−x. The same probability applies to
arbitrary control-flow errors, e.g., caused by a randomly faulted program counter.
On the other hand, performing a specific control-flow transfer via faults is as
hard as forcing the x capacity bits and the program counter (e.g., 32bits) to the
desired value. However, this is non-trivial since the sponge state is secret and
must be extracted or brute forced first. Furthermore, being able to control that
many bits precisely is quite hard in practice.

Instead of altering the control flow, fault attackers can also try to manipulate
code by injecting bit flips. For example, attackers can use clock or power glitches
to inject random bit flips into code. However, it takes roughly 2r tries to hit
one specific instruction with random bit flips. Therefore, another approach is to
use a small and limited number of precise bit flips in the fault attack instead.
Yet, exploiting precise bit flips in the encoded value is as hard as utilizing a
differential characteristic of the permutation. Only precise bit flips in the plain
instruction can be exploited directly. However, regardless of whether random
or precise bit flips are injected, bit flips in code modify the sponge state as
well. This randomizes the sponge output of all subsequent instructions and
therefore prevents further exploitation. Moreover, SCFP can also protect the
plain instructions against fault attacks as well by feeding the decoder signals
back into the sponge state.

Depending on the concrete security level s and choice of sponge parameters r
and x, we identify two different types of SCFP instances using unkeyed permuta-
tions. First, AEE denotes instances with cryptographic security levels, i.e., at
least 80bits, that offer CFI as well as confidentiality and authenticity of software
IP. Second, IE denotes instances below cryptographic security levels to enforce
CFI only.

Authentic-Encrypted Execution

AEE features cryptographic security levels for encrypting and authenticating
code. This automatically defeats adversaries which wiretap the communication to
the external memory chips without any need for further code encryption and/or
authentication. Moreover, software attacks are made harder too. As other CFI
schemes, AEE hampers return- and jump-oriented programming attacks. The
strong encryption and authentication further mitigates both code injection and
code disclosure attacks. AEE is therefore a replacement for established software
attack countermeasures like DEP (i.e., WˆX), CFI, and RˆX. In addition, by

3.3. Instantiations 47

enforcing CFI AEE also prevents fault attacks on the processor chip that aim at
instruction or control-flow manipulation.

From a cryptographic perspective, AEE requires a permutation size of at
least 192bits to yield 80-bit security for a 32-bit instruction set. One suitable
permutation to instantiate AEE hence is Keccak-p[200,12] [Ber+16b] with 200-bit
state size and 12 rounds as used in Keyak. The exceeding 8 bits increase the
capacity and thus the security level to 84 bits. However, as elaborated before,
the specifics of AEE result in a complexity of 2168 for state recovery, control-flow
hijacking, and fault attacks on control flow. Similarly, a single instruction can be
successfully manipulated from software or using fault attacks with complexity
232, but the internal 168-bit state will cause the execution of random instructions
afterwards.

Infective Execution

Contrary to AEE, IE uses a small permutation and thus, from a cryptographic
point of view, cannot provide a strong level of security. In particular, IE behaves
like a context-sensitive instruction-set randomization rather than authenticated
encryption. IE thus fails to ensure confidentiality and authenticity of software
IP. However, the parameterization of IE forms a practical CFI scheme that
considerably complicates code reuse attacks as well as fault attacks on the
processor chip itself. Yet, the concrete instantiation of IE is highly application
specific.

For a 32-bit ISA, IE can, for example, be instantiated with 50-bit state size
and the Keccak-p[50,12] [Ber+16b] permutation (i.e., 12 rounds as in Keyak).
Using two bits for fast error recovery gives a sponge rate r = 34 bits and a sponge
capacity x = 16bits, which also corresponds to the size of the patch values.
From a cryptographic perspective, this IE instance yields merely 8-bit security.
However, the probability for successful code injection and manipulation of control
flow still is 2−16.

The main drawback of IE is that an attacker with access to the encrypted
binary can easily perform state recovery offline, in our example with complexity
216. State recovery eventually breaks the CFI property of IE for software
attackers. Namely, a software attacker knowing the secret, internal IE state can
compute correct ciphertexts and patch values, and inject these into the code
from within software when performing code injection or reuse attacks. However,
the complexity of physical fault injection on the processor chip itself is still
high enough for the parameterization of IE. Nevertheless, to ensure CFI for
software attackers as well, access to the encrypted binary must be limited. While
this restricts the attacker compared to the original threat model in Section 3.1,
access control can easily be enforced using two different mechanisms: (1) by
using execute-only memory, software attackers lose online access to the encrypted
binary, and (2) by storing the binary in on-chip memory, attackers with physical
access cannot read the encrypted binary any more. As a result, IE is particularly
interesting for tiny IoT devices without external memory and for smart cards.
Note, however, that state recovery, code analysis, and wide-spread deployment of

3.3. Instantiations 48

attacks can easily be mitigated by using a different seed for IE on every device
as this causes the internal states, patch values, ciphertexts, and positions of
state collisions to change. Moreover, note that the probabilities for manipulating
control flow stated above are enough to enforce CFI and are indeed in the range
of entropy estimations of other techniques to prevent code reuse attacks, e.g.,
software diversification [Cle+17a].

3.3.2 Keyed Permutations
AEE enforces its security properties by using a sufficiently large permutation and
thus capacity. However, a sponge capacity providing cryptographic security levels
also implies larger AEE patch values and thus memory overhead. On the other
hand, IE yields lower memory overhead by using a small permutation, but cannot
sufficiently protect software IP and its authenticity. For this reason, an SCFP
instance with low memory overhead, but with similar security properties as AEE,
is desirable. One approach to tackle this problem are keyed permutations.

When using a keyed permutation, the security of SCFP does not only depend
on the sponge capacity x, but also on the security level sp of the permutation
itself. As for AEE and IE, the authenticity when using keyed permutations
is determined by the sponge capacity x, i.e., the authenticity level is x/2bits.
However, the complexity of learning the plaintext of the encrypted binary is
2x+sp and thus also depends on the security guarantees of the permutation with
respect to the permutation key.

Authentic-Encrypted Execution Light

We build on this observation and introduce AEE-Light to denote SCFP instances
based on keyed permutations. AEE-Light offers the same security bounds as
AEE with respect to authenticity and CFI. For example, control flow hijacking
and fault attacks on control flow have complexity 2x, whereas successful injec-
tion of a single instruction has complexity 2r. On the other hand, successful
recovery of the software IP or the internal state from the encrypted image has
complexity 2x+sp . By using a permutation with sufficiently high security level sp,
the confidentiality of software IP is hence guaranteed and state recovery, code
injection, and meaningful forgery are prevented. In particular, even if an attacker
recovers the x-bit internal state, meaningful injection or forgery of more than
one instruction still has complexity 2sp as the permutation key is unknown to
the attacker.

For 32-bit instructions, a suitable choice for the keyed permutation is the
64-bit block cipher Prince [Bor+12a], which uses a 128-bit key to offer sp = 96-bit
security. This results in a sponge capacity x = 32bits. State recovery using this
AEE-Light instance has complexity 2128 and is thus infeasible. This effectively
protects the software IP and prevents both code injection and analysis. Contrary
to that, IE from before uses a similarly small permutation but cannot guarantee
any of these features without further techniques to hide the encrypted binary.
However, while the cryptographic level of authenticity guaranteed by this instance

3.3. Instantiations 49

of AEE-Light is only 16 bits, meaningful code reuse attacks and forgery are much
harder. Namely, the expected complexity to find the correct patch value is 232,
which is enough to enforce CFI and to prevent code reuse and physical fault
attacks. Besides, the sp = 96-bit security of the permutation further hardens any
attempts to tamper with the software binary in a meaningful way. In particular,
even though one single instruction can be manipulated with complexity 232,
meaningful modification of multiple instructions is significantly harder since
both the internal AEE-Light state and the permutation key are unknown to the
attacker.

3.3.3 Discussion
Table 3.1 summarizes the exemplary instances of AEE, AEE-Light, and IE. In
detail, Table 3.1 shows the respective attack complexities for Code Injection
Attacks (CIA), Code Reuse Attacks (CRA), Extraction of Software IP (ESIP), and
Fault Attack induced Instruction Skips (FAIS). AEE is the strongest variant with
168-bit security for all considered attacks. At the further end, IE is the smallest
variant and offers merely 16-bit security for the mentioned attacks. However, this
suffices to enforce CFI and prevent code reuse as well as fault attacks on control
flow when the code binary remains hidden. As a trade-off between these two,
AEE-Light uses keyed permutations to simultaneously attain small 32-bit patch
values, i.e., low memory overhead, and good security properties. In particular,
AEE-Light provides 128-bit security in terms of IP recovery and code injection,
whereas its security level with respect to code reuse and control-flow fault attacks
is 32 bits and thus sufficiently high for CFI.

Table 3.1: Examples of SCFP instances for a 32-bit ISA and the respective attack
complexities.

Conf. [bit] Attack Complexity [bit]
Permutation x sp CIAa CRAb ESIPa FAISb Type
Keccak-p[200,12] 168 — 168 168 168 168 AEE
Keccak-p[50,12] 16 — 16 16 16 16 IE
Prince 32 96 128 32 128 32 AEE-Light

aRequires the recovery of capacity and permutation key, i.e., x + sp bits.
bRequires to find and inject the correct patch values, i.e., xbits.

3.4. RISC-V Implementation 50

3.4 RISC-V Implementation
Building a processor with support for Sponge-Based Control-Flow Protection
requires hardware as well as software modifications. In the following, we discuss
the processor architecture of our CPU core Remus, detail our extensions to the
RISC-V ISA, and introduce the used custom software toolchain.

3.4.1 Processor Architecture
Remus, our RISC-V core with SCFP extensions is based on an open-source
implementation of RI5CY [ETH17b], the processor core from the Pulpino System-
on-Chip (SoC) [ETH17a]. Remus implements the RV32I base ISA as well as the
M-extension which provides multiplication and division instructions. In addition,
major parts of the RISC-V privileged architecture draft Version 1.9.1 [Wat+16]1,
including Memory-Management Unit (MMU) with Sv32 support, Translation-
Lookaside Buffers (TLBs), and hardware Page-Table Walker (PTW), are sup-
ported by Remus. The RISC-V ISA [WA17] is particularly suited for this study
as it keeps a reserved encoding space for custom extensions, which we have used
to implement additional instructions to help with the SCFP implementation.

Figure 3.8 shows the 5-stage pipeline of the Remus core which features a dedi-
cated SCFP decryption stage between the fetch and decode stages of the original
RI5CY implementation. Our goal was to support one instruction per cycle opera-
tion with minimal impact on the overall performance. We have therefore selected
an AEE-Light implementation with 64 bits (i.e., 32bits capacity and 32 bits rate)
operated in an APE-like mode. To achieve the required throughput we used a
fully unrolled implementation of the low-latency block cipher Prince [Bor+12a]
as permutation.

Finally, to enable easier evaluation of SCFP, Remus has the capability to
enable and disable the additional SCFP pipeline stage during context switches. It
is therefore possible to execute standard RV32IM code in a 4-stage configuration,
similar to RI5CY, as well as SCFP encrypted code in a 5-stage configuration on
Remus. In combination with the preliminary privileged architecture support, this
makes Remus an ideal platform for evaluating SCFP with different bare-metal
and operating system workloads.

Remus was, furthermore, successfully integrated in an PULPissimo [ETH18]
platform-based microcontroller called Patronus. Patronus features a rich set
of peripherals including GPIO, timers, a uDMA controller as well as various
communication interfaces like I2C, I2S, JTAG, SPI, and UART. The final design
was taped out [Sch+18a] at ETH Zurich using UMC 65 nm technology and has
been manufactured as an Application Specific Integrated Circuit (ASIC). Note
that extending the RISC-V core with SCFP did not change the target frequency
of 100 MHz.

1The latest version of the privileged architecture draft prior to the tape-out.

3.4. RISC-V Implementation 51

Figure 3.8: Remus core pipeline with dedicated SCFP decryption stage and MMU.

3.4.2 RISC-V Instruction Set Extensions to support SCFP
As detailed in Section 3.1.3, when SCFP is employed, patch values have to
be injected into the cipher state to deal with arbitrary control-flow transfers.
In our implementation we opt for augmenting the control-flow instructions in
the RISC-V ISA with support for handling patch values. In a processor that
exclusively supports SCFP encrypted code, it is possible to completely replace
the original branch instructions with their extended counterparts.

However, while designing Remus, we wanted to retain full compatibility with
the RISC-V ISA. Instead of replacing the original control-flow instructions we
therefore added patching support by introducing new conditional branch (BPEQ,
BPNE, . . .) and jump-and-link instructions (JALP and JALRP). Furthermore, we
have added a second variant of the BPEQ instruction called BPDEQ. This BPDEQ
instruction provides an extension point for linking software redundancy with the
SCFP state and can be used to protect data against fault attacks [SWM18].

To be able to reuse the fetch unit for loading the 32-bit patch values into the
SCFP stage the patch values are located either directly following the respective
instruction (PC + 4) or at the destination of the jump. The encoding for these
new instructions is shown in Figure 3.9 and is similar to the original encodings.
Note further that we deliberately decided against using 64-bit RISC-V instruction
encodings to embed the patch values because the BPxxx instructions alone would
already consume the entire 64-bit encoding space.

Listing 1 shows the functionality of the added BPxxx instructions. If the
branch is taken, the patch value is injected into the SCFP state, otherwise the
next 4 bytes are skipped as these hold the patch value. The BPDEQ instruction
in addition also injects the first comparison operand into the SCFP state. As
detailed in [SWM18], this second patching operation can be used to link data
redundancy schemes, e.g., AN-codes, with SCFP.

The pseudo code in Listing 2 describes the semantic of the JALRP instruction.

3.4. RISC-V Implementation 52

01267111214151920242531

imm[12|10:5] rs2 rs1 x x x imm[4:1|11] 1 0 1 1 0 1 1 BPxxx
imm[12|10:5] rs2 rs1 0 1 0 imm[4:1|11] 1 0 1 1 0 1 1 BPDEQ

cond. custom-2
01267111231

imm[20|10:1|11|19:12] rd 1 1 1 1 0 1 1 JALP
custom-3

0126711121415192031

imm[11:0] rs1 0 0 1 rd 1 1 0 0 1 1 1 JALRP
JALR

Figure 3.9: BPEQ (000), BPNE (001), BPLT (100), BPGE (101), BPLTU (110), BPGEU
(111), and BPDEQ (010) implemented as 25-bit greenfield extension into
the custom-2 major opcode. JALP implemented as 25-bit greenfield exten-
sion into the custom-3 major opcode and JALRP implemented as 22-bit
brownfield extension into e JALR major opcode.

Similar to the regular JALR instruction, the target of the jump, i.e., the next
Program Counter (PC) value, is determined by Reg[rs1] plus imm offset and the
address of the next instruction is saved in the destination register rd. However,
additionally, two different types of patching are supported depending on the
Least Significant Bit (LSB) of the Target address. The first type, when the
LSB is zero, simply applies one patch, i.e., the TargetPatch, similar to the
BPxxx instructions. The second type, on the other hand, applies two patches,
i.e., SrcPatch and TargetPatch, with a sponge permutation in between. In any
case, the LSB in the destination register is set. Note that we can use the LSB to
decide on the patching methodology because it is guaranteed to be unused in
RV32I code due to the 4-byte alignment.

Defining JALRP in this way permits to easily implement the proposed patching
convention for function calls (see Figure 3.4 and Figure 3.5) without requiring
separate functions, branches based on the call type, or call wrappers. Namely,
direct function calls, performed with JAL or JALR, patch once when they return
with JALRP. On the other hand, indirect function calls, performed with JALRP
and unaligned target address, patch twice on call and twice on return with JALRP.

Listing 1 Pseudo code for the BPxxx instructions.
Note: SP C denotes the SCFP state, P C the program counter
Note: P atchV alue is located at P C + 4
1: if opcode = BPDEQ then
2: SP C ← SP C ⊕ Reg[rs1] // apply patch
3: if Reg[rs1] {=, 6=,<,≥} Reg[rs2] then
4: SP C ← SP C ⊕ P atchV alue // apply patch
5: P C ← P C + signExtend(imm) // perform branch
6: else
7: P C ← P C + 8 // fall-through but skip patch

3.4. RISC-V Implementation 53

3.4.3 Extensions of the RISC-V Privileged Architecture
An additional challenge in our SCFP implementation is to support context
switches as well as interrupt handling. We have added several Control and
Status Registers (CSRs) to control the behavior of the SCFP decryption unit
for each supported privilege level (i.e., machine, supervisor, user). For example,
CSRs that configure which 128-bit Prince key is used have been implemented
(i.e., xKEY0, xKEY0H, xKEY1, xKEY1H, where x is either M, S, or U for the different
processor modes). On trap entry and exit, depending on the entered privilege
mode, the correct key is transferred from these CSRs into the SCFP unit.

Furthermore, similar to the xEPC registers, xSPONGE registers have been added
that capture the sponge state when an exception or interrupt occurs. Depending
on the trap cause, either the state before or after decrypting the currently executed
instruction is saved. More concretely, traps due to executing ECALL capture the
state after decrypting the ECALL instruction which permits to continue with the
next instruction after trap handling. In all other cases, the current instruction
has to be replayed and therefore the state before the decryption is stored.

Note that the entry state of a trap handler is independent of the regular
execution state. It gets derived, similar to the JALRP instruction, by permuting
the zero state and the trap handler address followed by applying a TargetPatch
that is located at the trap handler entry point. This approach permits to preempt
and resume code at arbitrary points. Furthermore, this also enables us to detect
and recover from the random execution state that is entered when the processor
is under attack (see Section 3.1.7).

3.4.4 Software Toolchain
Generating binaries for our custom processor in AEE-Light mode requires a
custom toolchain. The initial version of this toolchain, as used for evaluation in
the EuroS&P paper [Wer+18] and for the reported results in Section 3.5, was
rather simple. We employed the standard RISC-V GNU toolchain which we only
extended with assembling support for our custom instructions. Additionally, a

Listing 2 Pseudo code for the JALRP instruction.
Note: SP C denotes the SCFP state, P C the program counter
Note: SrcP atch is located at P C + 4
Note: T argetP atch is located at AlignedT arget

1: T arget← Reg[rs1] + signExtend(imm)
2: AlignedT arget← T arget &∼3 // determine target
3: if T arget & 1 then
4: SP C ← SP C ⊕ SrcP atch // apply patch
5: SP C ← permute(SP C, AlignedT arget)
6: Reg[rd]← P C + 9 // set link reg.
7: else
8: Reg[rd]← P C + 5 // set link reg.
9: SP C ← SP C ⊕ T argetP atch // apply patch
10: P C ← AlignedT arget + 4 // perform jump

3.5. Evaluation 54

post-processing tool has been developed which consumes the final elf binary in
order to perform the encryption of the code and to fill in the required patch
values.

Since the C compiler has not been extended with SCFP support, this early
toolchain can natively only handle assembler code which contains placeholders for
the patch values and uses our protected control-flow instructions. However, due
to the way we designed our instruction-set integration, it is quite easy to support
the protection of C programs via simple textual replacement of instructions on
the assembly level.

More concretely, when compiling C code for our processor, we first compiled
the C code to assembly, where we replace all ordinary control-flow instructions
through the protected counterparts and embed NOP instructions as placeholders
for the patch values. The resulting assembly files are then assembled and linked.
Finally, the resulting elf file is processed using our post-processing tool which
emits the encrypted binary. While not particularly intuitive to use, this simple
flow already suffices to demonstrate the practicality of SCFP as well as its strong
performance.

However, more sophisticated toolchain support has been developed in the
meantime. Our current tooling directly integrates the emission of SCFP instruc-
tions and placeholders into the RISC-V MC backend of LLVM. Building a C
program for our SCFP-enabled Remus processor is, subsequently, as simple as
recompiling and linking the binary using clang. As before, generation of the patch
values and the actual encryption is performed via our post-processing tool. Note,
however, that the compiler still not really aware of SCFPs cost model (e.g., loops
get more expensive due to the patching). Improve the performance even further
should, therefore, be possible by tweaking the heuristics of the compiler.

3.5 Evaluation
While SCFP protects software and its execution from a large set of attacks, SCFP
also has an impact on chip area, power, and performance. This section evaluates
the cost of adding AEE-Light support to the Remus CPU as well as the Patronus
chip in terms of chip area overhead and power consumption. Additionally, the
performance impact of AEE-Light is quantified by analyzing binary size increase
and execution time overhead on our RISC-V processor. Finally, the actual error
detection latency of our Remus CPU is evaluated. Our results demonstrate the
practicality of SCFP with a size overhead of 19.8 % and a performance overhead
of 9.1 % on average.

3.5.1 Area
The Patronus chip, including our Remus CPU, has been implemented in the
UMC65LL process with 8 metal layers and occupies a total area of 6.75 mm2

including I/O buffers. The Remus core contributes 0.120 mm2 (about 80 kGE)2,
21 GE conforms to the area of a 2-input NAND gate with driving strength 1.

3.5. Evaluation 55

Figure 3.10: Die shot [Sch+18a] of the Patronus chip after bonding.

which is only a small fraction of the total SoC area. The majority of the chip
area is occupied by a total 640 kB of memory which is sufficiently large to run a
port of the SeL4 operating system. The Patronus chip includes several additional
blocks unrelated to the work described in this paper. The timing of the system
is dominated by the access speed of the large RAM macros, and therefore a
relatively conservative target clock frequency of 100 MHz for worst case corners
has been used in the design. A chip photograph of the manufactured Patronus
chip can be seen in Figure 3.10.

A detailed analysis of the active circuit area of Remus for different clock
constraints is presented in Table 3.2. It can be seen that the SCFP stage alone
contributes already between 19 and 32 % of Remus’ area, most of which is due to
the fully unrolled Prince implementation which requires between 15 and 29 % of
the core. Within a complete system, this overhead is much smaller as typically
the entire core occupies only a small part of the system. For example, in Patronus,
Remus occupies less than 5 % of the total area.

3.5.2 Code Size and Runtime
We used our software toolchain to instrument, compile and encrypt a set of C
benchmarks to evaluate our implementation of AEE-Light. Several benchmarks
from the PULPino repository [ETH17a] were used: AES in CBC mode (aes_cbc),
a 2-dimensional matrix convolution (conv2d), 100 runs of dhrystone, a finite
response filter (fir), a fast Fourier transform (fft), and an implementation of the

3.5. Evaluation 56

inflection point method (ipm). Moreover, we used two implementation variants
of the elliptic curve point multiplication (SECP192R1) that were internally
available at our department. Both ecc and ecc_opt are pure C implementations
targeted at microcontrollers. However, while ecc uses a generic implementation
of the underlying multi-precision integer arithmetic, the multi-precision integer
arithmetic in ecc_opt uses completely unrolled loops and only works for the
specific elliptic curve. We compiled all programs at optimization level -O3.
Since the manufactured ASIC was not yet available when writing the original
paper [Wer+18], all runtime values have been determined using cycle accurate
HDL simulation. Unfortunately, only a rather small number of short test programs
could be evaluated this way since cycle accurate HDL simulation is rather slow.

Table 3.3 shows the results of our evaluation of code size and execution
time. In particular, Table 3.3 compares the unprotected, standard executables
of our benchmark programs with the executables protected and encrypted via
our instance of AEE-Light. Both program versions have been executed on our
modified processor which features either a four stage (i.e., baseline) or a five
stage (i.e., AEE-Light) pipeline.

For our set of benchmarks, it shows that the overhead in code size due to the
inserted patch values ranges between 14.8 % and 25.6 % and averages to 19.8 %.
This overhead is mainly affected by the number of branches and function calls
in the binary. On the other hand, the runtime overhead ranges between 3.8 %
and 14.9 % and averages to 9.1 %. This runtime overhead is significantly lower
than the code size overhead and mainly depends on the number of branches and
function calls that are effectively taken during runtime. This becomes especially
visible for the two implementations of elliptic curves. Namely, as the inner loops
are unrolled in ecc_opt, the number of executed branches drops massively from
170 k taken branches to 20 k and hence the runtime overhead for ecc_opt is much
lower than for ecc. On the other hand, ecc and ecc_opt yet have very similar
code size and code overhead.

In terms of related work, only SOFIA [Cle+16; Cle+17b] comes with similar
security properties as SCFP. The most similar Prince-based SOFIA instance
features an average overhead of 141 % in terms of clock cycles and 203 % in code
size. However, this instance uses 64-bit tags and thus offers stronger authenticity
than the evaluate AEE-Light variant with 32-bit capacity. Still, regarding runtime,
even though it is hard to estimate, we are quite confident that AEE-Light is
faster than SOFIA even at equal security level. In terms of code size overhead,
on the other hand, we can assert with certainty that AEE-Light would be smaller.
After all the numer of patch values does not change and their size is directly
determined by the capacity size.

3.5.3 Power
As part of the tape-out, also detailed post-layout simulations of the manufactured
netlist under typical conditions at 50 MHz where performed. The gathered power
values reflect the consumed power during the main computation part of the
benchmark and are summarized in Table 3.4. These simulation runs predate the

3.5. Evaluation 57

Table 3.2: Remus post-synthesis area breakdown (kGE) for different clock constraints,
using worst-case libraries (1.08V/125◦C).

Area (in kGE)
Frq. (in MHz) 33 50 75 100 150
IF-stage 3.3 3.6 3.4 4.0 5.5
SCFP-stage 10.9 10.9 13.4 25.3 26.0

Prince 8.9 8.8 11.4 23.0 23.3
ID-stage 15.3 15.4 16.0 16.7 17.6
EX-stage 14.4 14.5 15.5 16.2 16.7
WB-stage 1.8 1.8 1.9 2.4 3.2
MMU 3.4 3.5 3.7 3.8 3.9

iTLB 1.4 1.5 1.5 1.5 1.6
dTLB 1.4 1.5 1.5 1.6 1.6

CSR 8.9 8.9 9.9 10.3 10.3
Remus Total 58.3 58.8 64.2 79.0 83.6

Table 3.3: Evaluation results of AEE-Light in HDL simulation.

Code Size (text + data) Runtime
Baseline Overhead Baseline Overhead
[kB] [%] [kCycles] [%]

aes_cbc 10.0 14.8 43.4 9.5
conv2d 4.6 25.6 5.4 4.8
dhrystone 7.5 20.1 50.6 14.4
ecc 9.3 21.0 4282 9.2
ecc_opt 9.6 20.1 3032 3.8
fir 5.5 20.9 24.0 9.5
fft 7.1 16.8 45.6 7.0
ipm 8.8 19.4 4.5 14.9
Average 19.8 9.1

3.5. Evaluation 58

performance simulations for the EuroS&P publication [Wer+18] and were much
more extensive (i.e., more benchmarks from the PULPino repository [ETH17a]).
However, although runtime performance was basically identical, we opted to
perform new performance simulations to ensure consistency after a libc upgrade
in our toolchain.

Taking only Remus into account, power consumption with SCFP increases
between 21 and 32 % (average around 25 %). For the full Patronus chip, the
power overhead of enabling SCFP is with 7 to 17 % noticeably smaller. As
with the area, the system level overhead is therefore much smaller and varies
depending on the executed software as well as the overall system composition.

The power consumption obtained through post-layout simulations have shown
good agreement with actual measurement results in this technology, and allow
us, unlike measurement on the chip which only has a single core power supply,
to identify the contribution of individual blocks at a much finer level. However,
to verify that the simulated results indeed are sensible, also actual measurements
of the Patronus ASIC have been performed. For example, the measured results
for the fir benchmark, that induced the highest overhead in simulation, is shown
in Table 3.5. Across different frequencies, the measured overhead varies between
17.8 % and 21.3 %, slightly above the simulated result. On the other hand, linearly
approximating the absolute values at 50 MHz based on the measurements at
40 MHz and 60 MHz yields with 11.44 mW and 13.78 mW a slightly lower power
consumption for Patronus than in simulation. Still, overall the measured values
are in line with the simulation results and make us confident that our evaluation
is correct.

3.5.4 Fast Error Recovery Latency
Failed attempts to tamper with SCFP result in an invalid decryption unit state
which thwarts any controlled further exploitation since the processor starts ex-
ecuting a pseudo random instruction sequence. As mentioned in Section 3.4.3,
Remus can recover from this state via its trap handling. However, how many
instructions are executed until a trap is triggered can only be answered proba-
bilistically and depends, besides other factors, on the density of the implemented
instruction-set architecture.

For Remus, the implemented RISC-V RV32IM instruction set is quite sparse
meaning that more than 80 % of the available 32-bit instruction encodings are
invalid. Subsequently, the expected detection latency is less than 1.3 instructions.
We practically verified this expectation on Patronus by deliberately destroying the
SCFP state via software and by measuring the number of executed instructions
via the performance counters. Interestingly, in this experiment, around 91.5 %
of the tampering attempts triggered a trap while or before the first instruction
has been executed. More than 99.2 % of the attempts where detected within two
executed instructions and all of our tries triggered a trap within four instructions.
The reason why our experiments perform even better than estimated is that also
other trap causes like, for example, memory access faults can cause traps and
therefore contribute when recovering from the random execution state.

3.5. Evaluation 59

Table 3.4: Estimated power consumption for Remus and Patronus with and without
SCFP at 50MHz clock frequency.

Benchmark
Power (in mW)

Remus Patronus
basel. with SCFP basel. with SCFP

aes_cbc 7.45 9.25 (24.1 %) 13.59 15.36 (13.0 %)
bubblesort 6.18 8.16 (32.0 %) 13.21 15.05 (13.9 %)
conv2d 7.40 8.97 (21.2 %) 14.48 15.48 (6.9 %)
fdctfst 7.56 9.35 (23.7 %) 13.89 15.55 (12.0 %)
fft 7.31 9.13 (24.9 %) 13.93 15.42 (10.7 %)
fir 6.98 9.20 (31.8 %) 13.45 15.71 (16.8 %)
keccak 7.71 9.57 (24.1 %) 14.52 16.38 (12.8 %)
matrixAdd 7.18 9.06 (26.2 %) 13.54 15.50 (14.5 %)
matrixMul16_dotp 7.56 9.23 (22.1 %) 13.89 15.75 (13.4 %)
matrixMul8_dotp 7.36 9.13 (24.0 %) 13.94 15.68 (12.5 %)
sha 7.88 9.80 (24.4 %) 14.04 15.85 (12.9 %)
stencil 6.71 8.53 (27.1 %) 13.58 15.25 (12.3 %)
Average 7.27 9.12 (25.4 %) 13.84 15.58 (12.6 %)

Table 3.5: Measured power consumption for Patronus with and without SCFP for the
fir benchmark.

Frequency Power (in mW)
basel. with SCFP overhead

20 5.25 6.16 17.8 %
40 9.44 11.28 19.5 %
60 13.44 16.28 21.1 %
80 16.42 19.92 21.3 %
100 20.13 24.10 19.7 %

3.6. Conclusion 60

3.6 Conclusion
Modern devices are exposed to a wide range of attacks, such as code injection,
code reuse attacks, and fault attacks. While there are suitable countermeasures
for each of these attacks, nowadays’ IoT devices hardly implement any protection
mechanism. On the other hand, it requires several of the existing countermeasures
to mitigate all of the mentioned attacks. However, a combination of different
countermeasures is hard to analyze and may result in overheads that are too
large for IoT devices.

To overcome this limitation, this chapter introduced Sponge-Based Control-
Flow Protection (SCFP). SCFP uses sponge-based authenticated encryption to
encrypt and authenticate software with instruction-level granularity. During
runtime, a hardware extension continuously decrypts instructions at the latest
possible point before the processor’s decode stage. As a result, SCFP effectively
protects confidentiality and authenticity of the software IP, and provides fine-
grained CFI to prevent code injection, code reuse, and fault attacks on the
control-flow. The CFI enforced by SCFP is compatible with interrupts and
standard operating systems. To emphasize the flexibility of SCFP, we further
introduced three different instances of SCFP for different application purposes.
While AEE provides all security features at cryptographic levels of security,
AEE-Light reduces the level of software authenticity in trade for smaller memory
overhead. In addition, IE is a very lightweight CFI scheme without any guarantees
w.r.t. software authenticity and confidentiality.

Finally, we demonstrated the practicality of SCFP by extending a RISC-V
processor core with an instance of AEE-Light and evaluating a set of benchmarks.
Our evaluations indicate that AEE-Light is suitable for many IoT scenarios with
low code size and runtime overheads of 19.8 % and 9.1 % on average, respectively.
The area and power overhead, determined from the manufactured ASIC, are in a
similar range and support this conclusion.

Interestingly, techniques like SCFP not only harden a processor against various
kinds of attacks but also introduce new opportunities for building additional
security features on top of them. In the following chapter, we explore one
particular extension idea and build a novel remote attestation scheme on top of
SCFP.

4
Remote Attestation and Licensing via

Secure Code Execution

The authenticity of devices and software is a central problem that any Internet-
of-Things (IoT) based service provider is challenged with. After all, counterfeited
gadgets as well as tampered software can harm a service’s reputation and/or cause
financial losses. Remote attestation is the proven tool to solve this authentication
problem that helps in establishing trust between communication partners.

Typically, remote attestation techniques provide evidence that a specific
software image has been loaded into the memory of a certain device. For this
purpose, the embedded device computes an authentic hash over the software
image before it is being used and sends this digest in a challenge-response protocol
to the remote verifier. However, such static attestation schemes [Eld+12; Noo+13]
do not include information about the actual execution of the software on the
embedded device. Static remote attestation hence inheres a Time-Of-Check
Time-Of-Use (TOCTOU) vulnerability as it fails to detect runtime attacks on
both hardware, e.g., fault injection and memory manipulation, and software, e.g.,
code-injection and code-reuse attacks.

To detect runtime attacks and prevent TOCTOU vulnerabilities, various
runtime attestation schemes have been proposed. Initially, these schemes focused
on preventing software attacks during runtime [Abe+16; Des+17; Sun+18] only.
More recent works [Zei+17], however, take specific physical attacks into account
as well, such as changing software in memory during the execution. Runtime
attestation schemes typically perform so-called path attestation and generate their
attestation report by computing an authentic hash of all executed instructions
and their respective addresses in memory. While this fingerprints the specific
execution, the remote verifier requires information about the concrete execution

61

62

path, such as taken branches and return addresses, to be able to verify the
attestation report. Sending and processing this metadata within path attestation
eventually results in significant communication and verification overheads.

Contribution. In this chapter, we tackle this efficiency and security issues
of contemporary remote attestation schemes and present a new concept based
hardware-supported Control-Flow Integrity (CFI) schemes like SOFIA [Cle+17b]
and Sponge-Based Control-Flow Protection (SCFP) (see Chapter 3). In the fol-
lowing we denote such schemes—based on authenticating and executing encrypted
code—as Secure Code Execution (SCE) techniques.

In more detail, we present a concept for realizing both static and runtime
attestation on embedded devices in the presence of software- as well as hardware-
based attacks by making use of SCE techniques. In our concept, we introduce the
novel graph attestation, which leverages properties that are inherent with SCE
techniques in order to attest the execution of software at minimal cost. Namely,
SCE schemes feature a secret device state that is unique for each particular
instruction within a program. As this state reflects the sequence of all previously
executed instructions, graph attestation at runtime makes use of this device
state to determine the authenticity of execution. Using this approach, graph
attestation is capable of proving that the execution reached particular checkpoints
within a program.

Our remote attestation concept works at arbitrary granularity, which allows
to trade off between performance and detection accuracy. For example, graph
attestation may be used to attest a single checkpoint at the end of a program,
but our concept also allows to build a path attestation scheme by attesting
every executed instruction. While the first variant gives evidence that the
program executed validly until the end, the second attests the concrete execution
path. Hereby, our concept is compatible with previous techniques to encode the
execution path as it is transferred to the verifier for checking the attestation
report. However, our combination of remote attestation and SCE also is a
measure to remotely enforce the execution of specific code parts and to obtain a
proof of its execution. Moreover, our attestation concept supports the attestation
of runtime user data to tackle data-oriented attacks.

We further present an approach to realize online licensing for IoT devices
based on remote attestation and SCE. In this approach, an IoT device uses
remote attestation to prove to a verifier that its execution is authentic as it
reaches a certain checkpoint within a program. The verifier then responds by
sending a token to the IoT device for updating the state within SCE which allows
to proceed its execution. This licensing technique can, for example, be used to
unlock software features online.

To demonstrate the practicality of our techniques, we present a prototype
implementation of our remote attestation concept based on SCFP. This implemen-
tation uses the Keccak permutation in a sponge-based Message Authentication
Code (MAC) to generate the attestation report. The software implementation
is evaluated on an SCFP-enabled 32-bit RISC-V processor in terms of runtime,

4.1. Background 63

memory efficiency, and size of the Keccak permutation. This evaluation reveals
that the 800-bit Keccak permutation is the most suitable on the utilized platform
with an average attestation performance of 78 cycles-per-byte (cpb), an attesta-
tion call overhead of 300 cycles, and a code size of 3540 bytes for the attestation
part.

Outline. This chapter is organized as follows. Section 4.1 gives an overview
on the state of the art of remote attestation and SCE. Section 4.2 presents our
concept for realizing remote attestation based on secure code execution and
in particular introduces our novel graph attestation and licensing approaches.
The implementation is part of Section 4.3, which is evaluated in Section 4.4.
Section 4.5 finally concludes this work.

4.1 Background
Remote attestation techniques allow to verify the authenticity of a program or its
execution on a remote device. On the other hand, SCE techniques are designed
to prevent malicious code from being executed on a device at all.

As this work aims to close the gap between these two mechanisms, this section
gives an overview on existing approaches to remote attestation as well as SCE.
We first focus on remote attestation and discuss current techniques to attest
program code and its execution paths. We then present state-of-the-art concepts
for SCE.

4.1.1 Remote Attestation
Remote attestation techniques are usually constructed as a challenge-response
protocol, where the verifier sends a challenge to a prover, who then returns an
attestation report to the verifier. Using this attestation report, the verifier can
determine whether the software run by the prover is authentic. However, the
hard- or software component generating the attestation report at the prover needs
to be trusted, i.e., to be part of a Trusted Computing Base (TCB). Commonly,
this TCB is formed by a Trusted Platform Module (TPM) or isolation techniques
such as ARM TrustZone.

Static Attestation

The easiest approach to remote attestation is static code attestation, such as in
[Eld+12; Noo+13]. Hereby, the prover generates the attestation report before
the attested code is being executed by computing a MAC or hash over both the
input challenge and a measurement of the program code. While this approach
proves to the verifier that the correct code has initially been loaded to the
memory, it does not prevent an attacker from changing the program binary after
the MAC has been computed, e.g., by injecting code from within software or
physically manipulating the memory. State-of-the-art technologies, such as Intel

4.1. Background 64

SGX [Gue16], hence additionally use access control and memory authentication
to counteract these kinds of TOCTOU attacks on static attestation. However,
all static attestation schemes are still inherently vulnerable to fault-injection and
code-reuse attacks, such as Return-Oriented Programming (ROP) [Sha07] and
Jump-Oriented Programming (JOP) [Ble+11]. These TOCTOU attacks can, on
the other hand, be prevented by attesting the actual program execution.

Path Attestation

The common approach to attest the actual program execution is path attestation.
Contrary to static attestation, path attestation prevents TOCTOU attacks by
taking into account the actually executed program path on the Control-Flow
Graph (CFG). In particular, the prover generates the attestation report by
computing a MAC over the input challenge and the measurement hash of the
sequence of executed Basic Blocks (BBs) on the program’s CFG. Such a BB is a
linear sequence of instructions with a single entry and a single exit point, i.e.,
without jumps, and a program’s CFG describes transitions between a program’s
BBs. In this respect, BBs are characterized by their start and end addresses.
Hence, a variant to implement path attestation [Abe+16; Des+17] is to hash
source and destination address of each Control-Flow Transfer (CFT).

While using BB address information to attest the executed control-flow path
protects against software attackers, it fails when attackers have physical access to
the attested device. In particular, physical access allows attackers to circumvent
such attestation scheme [Zei+17] by replacing the attested program with another
one having the same layout of the CFG, but different instructions. As a result,
Zeitouni et al. [Zei+17] additionally include the instruction encodings in their
measurement hash to protect against physical attackers.

However, path attestation includes information about the actually executed
program path, meaning that the measurement hash depends on the program’s
data inputs. The attestation report must hence include metadata about the
taken Control-Flow Path (CFP) in order to allow verification at the verifier.
Unfortunately, metadata about the CFP rises with the number of branches taken
during the execution, which leads to significant communication overheads and
computational effort to check the attestation report at the verifier. Consequently,
several proposals [Abe+16; Des+17; Sun+18] exist to minimize the metadata to
be transferred to the verifier, e.g., in case of loops.

4.1.2 Secure Code Execution
Path attestation allows to retrospectively find out whether a remote device
executed the wrong code, but yet cannot prevent a device from executing malicious
code. On the other hand, SCE techniques [Cle+17b; Wer+18] only execute code
if its authenticity has been verified beforehand.

For this purpose, SCE schemes typically use a modified processor core that
fetches encrypted instructions from the memory and decrypts them at the latest
point possible before they are fed into the processor’s decoder. In addition,

4.2. Remote Attestation Concept 65

the encrypted instruction stream can be augmented with redundancy such as
authentication tags that the processor can use to explicitly check the instructions’
authenticity. In this way, any attacker not in possession of the correct encryption
and authentication key is unable to create valid code for the target processor.
Instead, malicious code created by attackers either leads to the execution of a
pseudo-random instruction sequence [Wer+18] or is detected by the processor’s
authenticity check [Cle+17b].

SCE schemes additionally enforce that instructions are executed in their
intended order. For this purpose, SCE schemes use a stateful encryption and/or
authentication primitive where the state reflects the execution order of instruc-
tions. In particular, the state in a SCE scheme takes into account the concrete
location of an instruction in the program binary as well as information about its
predecessor instructions. However, such a stateful technique requires an unique
state for each instruction that must be available independent of which execution
path in the CFG led to the respective instruction. For this reason, secure code
execution schemes adjust the internal state at valid merge points in the CFG to
obtain a unique state value for each instruction in the program. As a result, the
encryption/authentication primitive is bound to the CFG of the program and
enforces that the execution adheres to its intended CFG.

Note, however, that SCE schemes provide only limited protection against data-
oriented attacks such as manipulation of function pointers or return addresses.
In this respect, code analysis aids to restrict allowable address targets at specific
call sites and shadow stacks can offer protection of return addresses. SCE-based
concepts, as in Section 4.2, naturally inherit many of the SCE security properties.

4.2 Remote Attestation Concept
As pointed out in Section 4.1, state-of-the-art remote attestation schemes suffer
from TOCTOU vulnerabilities or inhere high overheads. On the other hand, SCE
schemes fail to prove to a remote verifier which program is actually executed on
a device.

In this section, we overcome these shortcomings by bridging the gap between
remote attestation and SCE techniques. In particular, we introduce a holistic
concept for remote attestation, which does not only allow to implement conven-
tional static and path attestation, but also presents the novel graph attestation.
This graph attestation leverages SCE techniques to prove the authenticity of
execution at low cost. Besides, this section uses our attestation concepts to
further present an innovative method for implementing online licensing checks.

4.2.1 Threat Model and Trusted Computing Base
This work deals with the attestation of software running on IoT devices, which
face both software and physical attacks. Software attacks are assumed to remotely
exploit software bugs that enable arbitrary read and write accesses to the memory
as well as code injection and code-reuse attacks. Physical attacks, on the other

4.2. Remote Attestation Concept 66

Remote
Attestation

Secure
Code

Execution

SCE Metadata

SCE State

VerifierTag

Lic. Token

Nonce

SCE State RA State

Figure 4.1: Concept for remote attestation based on secure code execution. Blue
and red paths were added to support graph attestation and licensing,
respectively. Dashed paths are confidential.

hand, become feasible as attackers have direct physical access to the IoT device.
Physical attacks are very powerful and range from reading and manipulating data
stored in external memory to probing and forcing Printed Circuit Board (PCB)
buses. Moreover, physical attackers may also inject global faults into a microchip,
e.g., by using clock glitches, in order to exploit faulty computations. However,
we do not consider attackers performing invasive attacks such as probing of the
signals on a chip. Similarly, we regard side-channel attacks on hard- and software
implementations to be out of scope of this work.

In terms of the Trusted Computing Base (TCB), only the runtime components
that implement the SCE scheme and the implementation of the cryptographic
primitives for the remote attestation are part of the TCB. On the other hand,
the application that gets attested, as well as the protected functionality that
can be unlocked via the licensing extension, is outside of our TCB and can be
arbitrarily exploitable.

In the most minimal case, as discussed in Section 4.3, the TCB comprises the
SCE hardware, a working MMU/MPU with on-chip memory, and a small amount
of code—executed in the most privileged processor mode—that implements the
cryptographic operations. However, if needed, large parts of this cryptographic
software can also be implemented in hardware instead. Note also that all the
key material that is either stored (e.g., decryption key for the SCE scheme,
attestation device key), received (e.g., SCE metadata for the licensing feature),
or computed at runtime (e.g., internal SCE and attestation states) has to be
kept confidential and should only be accessible to the TCB components.

4.2.2 Overview
Our holistic attestation concept in Figure 4.1 combines ordinary remote attes-
tation with SCE. As usual, remote attestation receives a challenge nonce from
the verifier in order to attest data by computing and returning a tag. However,
to further attest the execution of code on the prover device, remote attestation
generates its report by including SCE states, which reflect the validity of all
previously executed instructions. To additionally realize an efficient licensing
technique, our remote attestation component is extended to receive licensing
tokens from the verifier and to transform them into SCE metadata, which allows
to unlock the execution within the SCE scheme.

4.2. Remote Attestation Concept 67

Remote Attestation

Initialize Measure Finalize

Attest. Key

Prover Nonce
Tag

Attest. Data

SCE Metadata

Verifier Nonce

Lic. Decrypt Lic. Token

Secure Code Execution

SCE State

RA State

Figure 4.2: Dataflow of remote attestation for a prover. The white components form
a MAC and the block highlighted in red is a cipher.

Internally, remote attestation builds upon a MAC as shown in Figure 4.2.
In this MAC construction, first the internal attestation state is initialized using
a secret attestation key as well as some randomness. Both the prover and the
verifier should contribute randomness during initialization, either explicit via
nonces as depicted in Figure 4.2, or implicit as part of attestation-key agreement
or derivation. In the second step, the measurement phase, the data being attested
is iteratively injected into the attestation state. Hereby, the data being attested
may comprise internal SCE states as well as any kind of data that is stored inside
memory, such as the encrypted binary or data constants. Each measurement
iteratively updates the attestation state given the previous state and the injected
data. Similar to hash-based schemes, this permits to map an arbitrarily long
input stream to a fixed size and results in Measure being a compression function.

In our concept, we use the internal attestation state in two different ways. The
first use case is the calculation of authentication tags via a finalization function.
These tags are part of our attestation reports and are sent to the verifier, along
with metadata about the initialization and the measurements performed, for
verification. Since it is not necessary to invert the finalization operation, we
recommend instantiating Finalize with a one-way function to ensure that the tag
cannot leak the internal state to adversaries.

The second use case of the internal attestation state is the decryption of
metadata values from licensing tokens. The verifier can provide such licensing
tokens to the prover to unlock specific functionalities. Without this licensing
token, the underlying SCE scheme will be unable to run the respective code any
further. Unlike the tag computation, decryption has to be invertible, because the
verifier calculates the licensing token from the required metadata value and the
corresponding attestation state. From a cryptographic point of view, licensing
tokens can hence be considered to be ciphertext and the metadata values to
be plaintext. In this respect, our construction in Figure 4.2 is similar to an
Authenticated Encryption (AE) cipher where the attested data is considered
to be associated data. However, in our concept, explicit authentication of the
tokens and the metadata is not a requirement. Namely, authentication is already
done implicitly given that erroneous values result in a modified SCE state, which

4.2. Remote Attestation Concept 68

subsequently prevents further program execution. In addition, measurements,
(intermediate) tag generation, and token decryption can be interleaved arbitrarily
in our use case.

Note that to validate an authentication tag and to generate licensing tokens,
the verifier needs to have access to the attested data, the measured SCE states,
and the attestation key. When the verifier generated the executed program itself,
these requirements can be easily fulfilled. Otherwise, the respective information
has to be provided by the program creator and/or the prover.

Moreover, note that the dataflow visualized in Figure 4.2 bears high resem-
blance with a sponge construction. Our prototype in Section 4.3 hence builds
upon such a construction and showcases its suitability for realizing our concept.

4.2.3 Attestation Modes
In the following, we discuss how the various attestation modes can be implemented
using our attestation concept.

Static Attestation

Static attestation schemes typically calculate a hash or a MAC over a challenge
nonce and a specific chunk of memory. The resulting digest or tag is then sent to
the verifier and compared with a locally computed value. If the check succeeds,
the verifier is convinced that the prover possesses the attested code and/or data
is genuine.

Considering that the required MAC functionality is part of our concept,
implementing static attestation in this way is easily possible. Keys and challenges
can be injected into the attestation state either via the initialize step or via the
first measurement steps. Afterwards, the memory area that should be attested is
iteratively measured and a tag is generated.

Security. Francillon et al. [Fra+14] already mentioned that the attestation
function in a static remote attestation scheme is conceptually very similar to
the computation of a MAC. However, as they detail, certain properties need
to be fulfilled in order to achieve security. Namely, attestation keys have to be
exclusively accessible by the attestation implementation and are not allowed to
leak. Furthermore, the attestation process should not be arbitrarily interruptible
and must be invoked in a well-defined, controlled manner. Finally, the attestation
routines should be immutable. Note that all of these properties aim to protect
the implementation of the attestation routines itself against attacks. Our threat
model captures these properties by placing the implementation in the TCB.
However, for static attestation the immutability property is also a requirement
for the attested memory in order to prevent TOCTOU attacks. Nevertheless, all
these properties are considered to be implementation requirements that have to
be argued on a case-by-case basis as soon as the concrete instantiation is fixed.

Regarding cryptographic security, the strength of static attestation using our
concept is solely determined by the strength of the MAC. It is therefore advisable
to instantiate the MAC, that is formed by the Initialize, Measure, and Finalize

4.2. Remote Attestation Concept 69

functions in our concept, with well-analyzed building blocks. Our proof of concept
implementation presented in Section 4.3, for example, uses an instantiation of
the well-studied Keccak permutation that has, in a different parameterization,
been standardized as part of the SHA-3 hash function.

Graph Attestation

Graph attestation is a novel type of attestation for code and can be considered a
hybrid between static attestation and path attestation. In more detail, in the first
step, a key and a challenge are injected into the attestation state, either via the
initialize function or via a measurement call. In the second step, the SCE state,
e.g., from SCFP, is injected into the attestation state using the measurement
function. Finally, in the last step, a tag is generated and sent to the verifier for
validation.

The successful validation of the SCE state attests that, up to the measurement
point, all executed instructions have been authentic and in the desired order.
This is equivalent to ensuring that the executed path adhered to the CFG of the
program, hence the name. Interestingly, even a simple one-shot graph attestation
at the end of the program already provides very valuable information about the
execution of a program to a verifier. Namely, due to the use of a verifier-selected
challenge, and as long as all internal states and keys are properly protected by
the prover hardware, successful graph attestation affirms that the attested code
was actually executed on request of the verifier. Graph attestation can hence be
used to build proof-of-work systems for arbitrary (meaningful) code.

Graph attestation leverages the fact that SCE techniques like SCFP and
SOFIA require a unique mapping between the CFG and the SCE execution
state. SCE schemes establish this mapping by actively compensating the state
differences that result from different valid execution paths within the program.
Invalid execution paths as well as previously detected errors, on the other hand,
are not affected by this transformation. As a result, there is no need to record
the exact execution path and to transmit it to the verifier for validation.

Assuming that SCE is already deployed, one-shot graph attestation therefore
only induces little additional overhead. Namely, the attestation state must be
initialized during startup and only one measurement and the finalization have
to be computed at the end of the program. On the other hand, no additional
overhead during the execution of the program is induced.

Security. The security of the composition proposed for graph attestation in
Figure 4.1 naturally relies on both the security of SCE and remote attestation.
However, such composition must also avoid any side effects that may result from
establishing a link between these two components. In particular, this means
that revealing the internal SCE state to remote attestation must not break the
security of SCE and remote attestation. Fortunately, the security of remote
attestation is independent of the type of data being attested, i.e., the secret SCE
state. On the other hand, the security of SCE is lost in case internal SCE states
leak. This effectively imposes an additional requirement on the implementation.
Namely, besides the tag output, the implementation of remote attestation and

4.2. Remote Attestation Concept 70

the respective link to SCE must not reveal anything about the secret SCE states
being processed.

From another perspective, graph attestation slightly relaxes the needed protec-
tion for code compared to static attestation. In more detail, the used SCE scheme
already actively counteracts TOCTOU attacks by preventing the execution of
tampered code. For this reason, no additional arrangements have to be taken to
ensure the immutability of the attested code. The proper protection of the TCB,
comprising the involved keys and the attestation implementation, is however still
necessary.

Regarding cryptographic properties, the security of graph attestation is
determined by the security of both the attestation MAC and the SCE scheme.
Breaking either of the two building blocks defeats the overall attestation and
may even render the other component useless. Assuming that the SCE scheme
has the greater impact on performance, we anticipate that typically the SCE
scheme will dictate the level of security for most instantiations. On the other
hand, the MAC instantiation can usually be strong since only little amounts of
data have to be processed. Still, having the possibility to adapt the overhead
and security of the MAC in our attestation concept to the individual needs of
the application is highly valuable.

Path Attestation

Using graph attestation as a foundation, path attestation can also be easily imple-
mented in our attestation concept. In more detail, while the overall initialization
and finalization approach is the same as in graph attestation, path attestation is
achieved by simply performing multiple measurements of the SCE state during
the runtime of the program.

Performing attestation of the SCE state instead of the actually executed
instructions provides again a huge advantage over related work. Namely, the
position of the measurement points can be chosen arbitrarily. Any parameter-
ization between measuring the SCE state at every instruction and measuring
the SCE state only at the end of the program is possible. Between the single
measurement points, graph attestation is in use.

Note that to validate a tag in the path attestation concept, the verifier needs
to know the exact positions in the code where and in which order measurements
have been performed during the execution. In this respect, all generic techniques
that have been proposed in related work to capture this information can similarly
be applied to our concept.

Security. As our path attestation approach is a generalized version of graph
attestation, its security properties and requirements are very similar. Namely,
the SCE scheme implicitly provides code immutability and the implementation
of remote attestation must not reveal anything about the secret SCE states
other than the attestation tag. This requirement is typically fulfilled by remote
attestation using a MAC to iteratively absorb multiple SCE state values.

The cryptographic security of the path attestation approach is as well deter-
mined by the security of both the MAC and the SCE scheme. Therefore, the

4.2. Remote Attestation Concept 71

same basic instantiation considerations hold true. Note however that, due to the
increased number of measurements, performance of the MAC is getting more
important.

Interestingly, path attestation does not only rely on the security of the
underlying SCE scheme, but, in terms of attestation capabilities, also improves it.
For example, Data-Oriented Programming (DOP) attacks are not prevented by
solely enforcing CFI using the SCE scheme, whereas path attestation is capable
of detecting such DOP attacks. Furthermore, internal state collisions within the
SCE scheme are much harder to exploit when path attestation is performed.

Hybrid Approaches

The MAC-based attestation approach within our concept allows to arbitrarily
mix and match the different attestation variants. For example, it is possible to
use static attestation to measure code and constants after startup and combine
it with graph attestation at selected positions within the software. Similarly,
path attestation can be intertwined with attestation of static data as it is used
during runtime. For example, values from processed lookup tables and other
intermediate data like loop counters can be injected into the attestation state as
desired.

Interestingly, exposing the measurement functionality to the attested code
itself, e.g., via a syscall interface or as a special instruction, allows to delegate
the decision on what to measure completely to the software. This eventually
adds a high degree of flexibility to path attestation, because, contrary to previous
approaches, it is not any more required to perform measurements with fixed
granularity, e.g., every basic block or control-flow transfer. Even further, having
a software that itself defines the measurement points used for remote attestation
can also lead to very compact representations for the metadata to be sent to
the verifier for checking the attestation report. Our prototype implementation
in Section 4.3 will give a concrete example of how to realize attestation with
measurement points defined in software.

4.2.4 Licensing Extension
Remote attestation, as presented in the previous subsections, enables a prover
to convince a verifier that a certain program is executed and that it behaves
correctly. Our licensing extension augments these attestation concepts with the
capability to unlock the execution of protected code fragments.

The general idea behind our licensing extension is to embed special, protected
code snippets, i.e., some functions, into the program of the prover. Without
additional information from the verifier, these functions cannot be executed by
the prover. It is therefore up to the verifier to provide this additional information
to the prover in the form of an encrypted licensing token, typically after successful
remote attestation. Subsequently, the prover is able to perform the call to the
protected function.

4.2. Remote Attestation Concept 72

Note that the proposed licensing tokens are specific to the executed program,
the targeted function, and the current remote attestation state, which in turn
depends on the used keys, the selected randomness, and the previously attested
code and data. Each token is therefore a highly specialized piece of data that
enables exactly one call to one specific protected method. As a result, a multitude
of use cases can be realized with our licensing extension.

One of the most prominent use cases is Intellectual Property (IP) protection.
Licensing tokens can be used to unlock software functionality, which in turn
can enable hardware features, based on preceding attestation results. Another
potential use case is, for example, to enforce interactive attestation. In the
previous subsection, we described a hybrid attestation approach where a program
is statically measured before the actual execution is attested via graph attestation
at the end of the program. Guarding the transition between static attestation and
graph attestation via a protected call, for example, ensures that only programs
which pass the initial verification can be executed at all.

On the technical side, implementing this licensing approach relies on the
observation that SCE schemes have to embed some kind of metadata into the
program to deal with code reuse and for error detection. SOFIA, for example,
interleaves MAC words with the code and introduces multiplexer blocks to enable
code reuse. Similarly, SCFP intertwines patch constants that are applied on
control-flow transfers. Without access to the required metadata, executing the
SCE-protected code is simply not possible.

Our licensing extension utilizes this observation and protects code snippets
from execution by simply removing the metadata that is needed to call the
protected code. The code itself, given that it is encrypted anyway, can still be
deployed as part of the program. The licensing tokens, which are provided by the
verifier to the prover, contain exactly this missing information and subsequently
enable the prover to execute the protected code. Note, however, that the licensing
tokens are actually encrypted versions of the metadata, where the encryption
key/tweak depends on the current attestation state. Therefore, even though
the metadata itself is constant, a new licensing token is required as soon as the
attestation state changes.

Security. The licensing extension builds upon the attestation state from our
remote attestation concept. As a result, secure instantiations of both the MAC
and the SCE scheme are a prerequisite for having a sane overall concept also
in this use case. However, while pure attestation requires the SCE states to be
protected from being revealed as they are passed to and processed within the
attestation MAC, our licensing concept introduces another sensitive link between
attestation and SCE to facilitate feature unlocking. This link, which is also shown
in Figure 4.1, transfers sensitive SCE metadata from the attestation part to SCE
and must be kept secret. Otherwise, the licensing feature will break. However,
note that neither SCE itself nor attestation loses security if SCE metadata falls
into the hands of attackers, because for SCE without licensing enabled, this
metadata is anyway a part of the public binary to enable balancing of different
CFPs.

4.3. Implementation 73

Besides the SCE metadata link, the cipher used for decrypting the licensing
tokens is another component that interacts with the attestation state. This
cipher must thus neither facilitate attacks on the attestation scheme nor leak
the SCE metadata. Both the cipher decrypting licensing tokens and the SCE
metadata link are hence part of the TCB and need to be properly protected by
the implementation.

Note that the way we use licensing tokens further stresses the need for
fresh randomness during initialization of the attestation scheme. Namely, it is
imperative that the implementation of the attestation scheme on the prover side
injects fresh randomness during initialization in order to prevent replay attacks
of the licensing tokens.

4.3 Implementation
Section 4.2 presented a concept to extend SCE techniques to remote attestation
with comprehensive capabilities to trade off between performance and attestation
granularity. To demonstrate the practicality of our concept, this section presents
an implementation of the hybrid remote attestation approach using SCFP as
the SCE scheme. We first detail the cryptographic instance we used for remote
attestation and then describe our soft- and hardware implementation.

4.3.1 Instance
We realized the MAC in our attestation concept, comprising initialization, mea-
surement and finalization functionality, using a sponge-based MAC [Ber+12b;
MRV15] as shown in Figure 4.3. After initialization with a secret key K and
the nonce n, this MAC continuously absorbs the data Di to be attested into its
secret state, and then outputs an attestation tag T . In this sponge-based MAC,
the data absorption rate can be chosen to be as large as the permutation size b
without loss of security. During tag generation, however, security is bounded by
the size of the secret capacity c. In general, to achieve a certain security level κ,
the capacity c must be chosen such that it fulfills c ≥ 2κ [Ber+08].

Our instances of the attestation MAC target the 128-bit security level. We
hence use a 128-bit key K and a 128-bit nonce n and squeeze a 128-bit tag T . As
permutation fr, we utilize Keccak-p[b,r] with state sizes b ∈ {400, 800, 1600} bits,
which is also well suited to offer 128-bit security. However, depending on the
concrete application, the frequency of data attestation steps, and the underlying
architecture, a different state size b yields the best efficiency. Besides the state
size, the number of permutation rounds is relevant for security as well. As in the
CAESAR submission Keyak [Ber+16b], we use r = 12 rounds for Keccak-p[b,r]
in all state sizes b.

4.3. Implementation 74

K
frfr

D0

n
fr

D1 T

r
n

c
b

Figure 4.3: Sponge-based MAC used in our prototype.

4.3.2 Hardware
The hardware for testing our attestation concept is the Patronus microcontroller
System-on-Chip (SoC) design (see Section 3.4). The integrated Remus processor
features a four-stage, in-order implementation of the RISC-V RV32IM Instruction-
Set Architecture (ISA) [WA17]. Most notably, this core provides support for
SCFP by integrating the SCFP decryption functionality into an additional
pipeline stage in between the processor’s fetch and decode stage and by adding
a set of new instructions to enable modification of the SCFP state in case of
branches.

The SCFP instance implemented in Remus is AEE-Light. This lightweight
SCFP instance uses the 64-bit Prince [Bor+12a] block cipher as a permutation.
For the 32-bit RISC-V ISA implemented by the processor core, this results in a
secret SCFP capacity of 32bits per instruction. Combined with the 96-bit security
from the keyed permutation, this is sufficient to resist common code-injection,
code-reuse, and fault attacks.

4.3.3 Software
We implemented our instance of remote attestation in a C library that can be
used by both the prover and the verifier. This library offers functionality to
initialize the attestation state, to absorb attested data into the state, and to
finalize attestation by squeezing a tag. To implement the respective sponge-based
attestation MAC, the library uses simple, readable C implementations of Keccak
without any architecture-dependent optimizations and which are based on the
implementation of Keccak-f[1600] by Saarinen [Saa16]. The library addresses
different attestation types by offering a set of measurement functions. For static
attestation, a measurement routine feeds the attestation MAC with data stored in
a specified memory region. For graph and path attestation, another measurement
function allows to inject the 32-bit secret capacity from the SCFP state into
the attestation MAC. In addition, it allows to absorb user-defined data into the
MAC, enabling the attestation of runtime data like program inputs and loop
variables.

Note that, in the general case this particular instantiation, due to the compa-
rably small secret SCFP state, does only provide probabilistic assurance that the

4.3. Implementation 75

correct software has been executed in one-shot graph attestation mode. However,
cryptographic certainty levels can easily be reached with just a few measurements
in a path or hybrid attestation mode. Moreover, in environments where, for
example, the verifier knows that only a limited number of programs have been
deployed for the prover, even one-shot graph attestation is sufficient to reliably
attest the software.

Prover

The prover runs the software to be attested and uses our attestation library for
generating the attestation report. The prover software is compiled for our RISC-V
architecture and post-processed to adapt and encrypt the binary according
to SCFP. This allows entangling attestation with SCFP. In particular, after
initializing the attestation state with a secret key K and a nonce n comprising
the challenge from the verifier and the randomness from the prover, the prover
software absorbs the SCFP state and user data into the attestation state as
desired.

The prover software is split among two different privilege levels. The function-
ality to be attested runs in user mode and is untrusted, whereas the attestation
library runs in machine mode as part of the TCB. As a result, the prover soft-
ware needs to switch to machine mode to perform attestation operations. For
this purpose, the prover software uses a supervisor call to trigger an interrupt
handler in machine mode. Depending on the syscall type, the interrupt handler
reads the provided syscall arguments from the Central Processing Unit (CPU)
registers and passes them to the respective function in the library. For path- and
graph-attestation calls, the interrupt handler further reads protected Control
and Status Registers (CSRs) to also provide the SCFP state and the instruction
address of the respective measurement call to the library. Finally, the interrupt
handler prints the instruction address and sends it as metadata to the verifier to
enable verification of the prover’s execution path.

Verifier

The verifier obtains an attestation tag and metadata from the prover. This
metadata includes the prover’s execution trace consisting of the instruction
addresses where the prover absorbed the SCFP state as well as runtime data
that has been absorbed. Besides this execution trace, the verifier is given a
list of instruction addresses and their respective SCFP decryption state for
the prover binary. This list is generated beforehand during compilation of the
prover software. Using this list, the verifier software looks up the valid SCFP
states belonging to the instruction addresses in the prover’s execution trace and
computes the correct attestation tag. In this way, the verifier can simply compare
the computed and the received attestation tag to check whether the prover’s
computation has been correct. Furthermore, comparisons between the program
and the measurement points can be performed to check if the executed path is
valid.

4.3. Implementation 76

4.3.4 Security
According to Francillon et al. [Fra+14], an implementation of remote attestation
has to fulfill a set of properties to be secure. In the following, we argue on the
security of our SCFP-based implementation of remote attestation with respect
to these properties.

• Exclusive Access and No Leaks: These two properties relate to the
implementation of the attestation library and are fulfilled by several, differ-
ent security mechanisms. In particular, both the secret key material used
by the attestation library and the attestation state are stored in secure
on-chip memory to protect it from attackers with physical access to off-chip
memory and PCB buses. To prevent malicious user software from accessing
key-related data, our attestation library is run exclusively in machine mode.
The Memory-Management Unit (MMU) hereby enforces that no code other
than the attestation library can access attestation keys and data in machine
mode. The attestation library itself does not leak any information about the
attestation key other than the attestation tag, assuming that the software
implementation is correct. In addition, SCFP protects the execution of the
attestation routines in that library and ensures its CFI.

• Immutability: This property refers to the attestation routines in our
TCB and TOCTOU vulnerabilities in the user software being attested.
For the user software, immutability is only relevant when performing static
attestation. In our implementation, we again rely on the combination of
on-chip memory and the access control features provided by the MMU
to achieve the desired immutability of code and constants. On the other
hand, in the context of graph and path attestation of code, our prototype is
immune to TOCTOU attacks anyway since code execution is protected by
the SCE scheme. In more detail, our implementation uses SCFP to ensure
authentic execution of the attested software by decrypting the software
directly within the processor’s pipeline. Hereby, any malicious modifications
to the attested software result in a modified SCFP state which prevents
subsequent program execution.
Concerning the attestation routines, again a set of different mechanisms
ensures their validity. While the attestation routines reside in on-chip
memory to hamper modifications by physical attackers, MMU access control
further adds protection against malicious accesses from within user software.
Moreover, the attestation routines are as well run using SCFP to maintain
their authentic execution.

• Uninterruptibility and Controlled Invocation: These two properties
relate to the implementation of the attestation library. Our implementa-
tion adheres to these security properties, because SCFP ensures that the
attestation routines can only be run in their intended manner. Namely,
SCFP enforces code execution to start at well-defined entry points and
to stay on valid CFPs. In addition, invocation of the attestation routines

4.3. Implementation 77

implies changing from user to machine mode via a well-defined syscall
interface, which taken by itself already hampers the malicious execution of
code fragments within the attestation library.

In addition to the aforementioned properties, Section 4.2 pointed out that, in
order to maintain SCE security, implementations of our concepts must further
ensure the confidentiality of the SCE states as they are passed to and processed
within the attestation routines. This section’s implementation adheres to this
additional requirement. Similar to the protection of attestation keys, MMU-
based access control for the machine-mode attestation code, on-chip memory
for processing SCFP secrets, and the application of SCFP to the attestation
routines themselves aid to prevent the leakage of a user application’s SCFP state.
Moreover, CPU-internal SCFP state registers are only accessible by code running
in machine mode, i.e., the attestation routines. As a result, SCFP states are
considered to remain confidential when the attestation routines’ implementation
in the TCB is assumed to be correct.

4.3.5 Implementation Aspects
Our remote attestation concept is highly flexible and offers a wide design space
for implementations. However, there are also several challenges such as key
management and support for multiple processes. In the following, we discuss
these implementation aspects in more detail.

Implementation Challenges

While this section’s implementation is confined to the attestation of bare-metal
embedded applications, a more challenging target are operating systems running
multiple processes. In this respect, SCE-enabled hardware typically provides
secure mechanisms to read and write SCE states that allow an operating system
to schedule multiple processes and threads. Our attestation concept can hence
build upon these capabilities by individually attesting multiple SCE-protected
threads and combining the results in a system-wide attestation report, which
besides a tag should contain sufficient metadata about all attested threads. On
the other hand, and as highlighted in [Sun+18], it will in many cases be sufficient
to protect and attest specific, critical operations on a target platform rather
than a complete system. Further note that more complex platforms featuring
multiple cores and out-of-order execution do not prevent the deployment of our
attestation concepts as long as SCE schemes are supported.

Quite noteworthy, implementations of our attestation and licensing techniques
do not require any hardware modifications to SCE-enabled platforms. As our
implementation shows, attestation can easily be implemented in software when
the trusted attestation routines are given access to the SCE state in hardware.
Hereby, note that a proper implementation of SCE must anyway provide access
to the SCE state to allow a trusted hypervisor or operating system schedule
multiple SCE-protected processes. In the same way, our online licensing technique

4.4. Evaluation 78

may be implemented purely in software by applying the SCE metadata update
directly to the SCE state register and resuming program execution. Nevertheless,
additional hardware components can help to significantly speed up the attestation
routines, which seems particularly interesting for realizations of path attestation.
In such case, an attestation hardware component may be triggered by a dedicated
attest instruction or may compute the attestation MAC with BB granularity
completely in parallel to SCE. As for SCE, attestation states from multiple
scheduled processes can in this case be managed by a secure hypervisor or
operating system.

Key Management

For the sake of simplicity, this work so far focused on the interaction of SCE
with remote attestation when each of these components possess and share their
own symmetric key with the program vendor and the verifier, respectively. A
practical application, however, also requires a strategy to deploy these keys to a
target device. A common approach to tackle this problem is the use of public-key
cryptography. Hereby, each target device possesses its own pair of public and
private key. The respective private key is kept secretly within the device itself
and the public key is made publicly available to facilitate encryption of symmetric
key material for SCE and remote attestation. Upon startup, the target device
then loads and decrypts the respective key material by using its private key.
In the following, the target device uses the decrypted symmetric keys to run
deployed SCE-protected software and to attest its state to a remote verifier. The
benefit of such key management approach is that, completely independent of a
remote verifier, everyone is able to deploy SCE-encrypted software to a specific
device in the field. This further emphasizes the relevance of remote attestation on
SCE-enabled devices: Even when program execution is protected by SCE, remote
parties do not know which program is running on the target device. Remote
attestation hence complements SCE techniques by allowing remote parties to
ascertain that a specific program is running on the device they communicate
with.

4.4 Evaluation
The overhead of our attestation concept strongly depends on the particular type of
remote attestation being used, i.e., static, graph, path, or hybrid attestation. To
quantify the runtime and code size overhead of our prototype, we hence perform
a two-step approach. First, we perform micro benchmarks to characterize the
performance of our attestation library. Second, we use these numbers to estimate
the cost of arbitrary types of remote attestation based on our library. We then
verify these estimates by also performing macro benchmarks.

4.4. Evaluation 79

Min. Absorption Avg. cost per byte
0

100

200

300

400

500

31
6

10
6

28
4

78

28
2

76

Ru
nt
im

e
[C
yc
le
s]

Keccak-p[400,12]
Keccak-p[800,12]
Keccak-p[1600,12]

Max. Absorption
0.0

5.0

10.0

15.0

5,
21

9
7,

66
7

14
,6

91

Ru
nt
im

e
[k

C
yc

le
s]

Figure 4.4: Runtime performance.

4.4.1 Library Characterization
As discussed in Section 4.3, our attestation library supports the Keccak permuta-
tion in three different sizes, i.e., 400, 800, and 1600 bits. We hence characterize
our library by performing a micro benchmark for each of these configurations.
This micro benchmark invokes measurement syscalls, as used for graph and path
attestation, in a loop and hereby measures the syscall execution time tabsorb.

In more detail, the benchmark invokes the measurement syscall with 64bits
of data to be absorbed into the MAC. This syscall then either yields a high
execution time, when the permutation needs to be computed, or a low execution
time, when the data can be directly xor-ed into the Keccak state. The minimum
execution time for a measurement syscall, i.e., min (tabsorb), then gives a rough
estimate for the overhead of trapping to machine mode, extracting the SCFP
state, and xor-ing 64 bits of data to the attestation state. Similarly, the maximum
execution time, i.e., max (tabsorb), provides an approximation of the additional
cost for computing one permutation. Finally, by measuring the attestation of a
larger chunk of memory and by taking into account the number of bytes that
can be absorbed with one permutation, the expected net runtime cost for the
permutation in terms of cycles-per-byte (cpb) has been determined.

The runtime results gathered from this naive evaluation of our attestation
library are depicted in Figure 4.4. The visualization shows that the minimum
cost for absorbing data into the attestation MAC is roughly 300 cycles for all
configurations. However, the actual performance of the tested Keccak permu-
tations differs notably. While Keccak-p[400,12] consumes 106 cpb on average
for transforming its state, Keccak-p[800,12] and Keccak-p[1600,12] consume less
than 80 cpb. The reason for this discrepancy in performance is the amount of
data that can be processed with each permutation call and the performance of
the respective permutation. We captured this figure by measuring the maximum

4.4. Evaluation 80

absorption runtime, which is dominated by the execution time of the permutation.
Even though, in this measurement, computing the Keccak-p[400,12] permutation
is the fastest with 5219 cycles, it can still not make up for the significantly smaller
state compared to the larger instantiations. Keccak-p[1600,12], on the other
hand, achieves a similar net runtime performance as Keccak-p[800,12], because
its state is twice the size and its permutation requires approximately twice the
time of the smaller configuration.

Note, however, that these results, while sufficient for our prototype, are still
far from optimized. In particular, the Keccak-p[800,12] configuration should in
theory be slightly faster than the Keccak-p[400,12] configuration given that the
same number of rounds is computed and considering that the 32-bit lane size
best suits the given processor architecture. However, less then optimal code is
currently emitted by the customized, SCFP-enhanced compiler, which explains
the current results.

4.4.2 Runtime Overhead Estimation and Validation
Based on our library characterization, the following formulas estimate the runtime
cost for initialization tinit, finalization tfinal, arbitrary measurement operations
tmeasure, and the whole attestation ttotal.

tinit = max (tabsorb)
tfinal = max (tabsorb)

tmeasure = nmeasurements · min (tabsorb) + nbytes · cpb
ttotal = tinit + tmeasure + tfinal

= 2 · max (tabsorb) + nbytes · cpb
+ nmeasurements · min (tabsorb)

In more detail, initialization and finalization each consist of a context switch
and exactly one permutation call and are hence approximated by the maximum
measured absorption time. On the other hand, the overhead of the measure-
ment operation depends on the concrete attestation type and linearly scales
with the number of absorbed bytes nbytes and the number of measurement calls
nmeasurements. Hereby, context switches induce an overhead in each measure-
ment call that is approximated with the minimum absorption time. In addition,
each absorbed byte requires cpb time in the permutation on average. Finally,

Table 4.1: Runtime overhead when attesting coremark.

Measured Estimated
[cycles] [cycles]

Static Attestation 4,615,903 4,629,993
Graph Attestation 13,547 16,242
Path Attestation 198,065 197,848

4.4. Evaluation 81

the runtime cost for the overall attestation operation ttotal is the sum of the
individual components. Inserting the numbers acquired during library characteri-
zation yields a formula for ttotal that estimates the overhead of our prototype
for all the discussed attestation modes including the hybrid approach. Using
Keccak-p[800,12] within our library, e.g., yields the following overhead formula:

ttotal = 15334 + 284 · nmeasurements + 78 · nbytes

Note that the algorithmic complexity for the different remote attestation
approaches can directly be deduced from the derived formula. Namely, for
straight-forward static attestation, the overhead scales with the number of
attested bytes, i.e., O(nbytes), given that the number of measurement calls is
typically fixed to one. Similarly, one-shot graph attestation only performs a
single measurement of the fixed-size SCE state and thus has the complexity
O(1). Finally, traditional path attestation attests a fixed amount of bytes per
measurement call, i.e., nbytes ∝ nmeasurement, and hence its overhead scales with
the number of measurement calls and has complexity O(nmeasurements).

Validation. To countercheck that our overhead estimation provides sensible
results, we implemented different remote attestation approaches for coremark1
and compare the measured overhead with the expected value. In more detail, for
20 iterations of the program, we measure exactly how much runtime overhead
is introduced by computing attestation tags for static, one-shot graph, and
path attestation, respectively. For static attestation, we measure the SCE
encrypted code segment of the application, i.e., 59156 bytes, before executing
the program. For graph attestation, the SCE state at the end of the benchmark
including the total execution time of the SCE loop are measured. Finally,
for path attestation, additionally the SCE state as well as the result of the
core_bench_list, core_bench_state, and core_bench_matrix functions is
measured. Thus, already 201 measurements of 8 bytes each are performed when
20 benchmark iterations are calculated. Note that, even though reporting actual
values is not permitted when the benchmark code is modified, neither static nor
graph attestation negatively impacts the determined coremark score. Both modes
do not require to perform additional computations within the benchmarked region.
Path attestation, on the other hand, decreases the score given that additional
measurements are intertwined with the benchmark.

The determined runtime overhead values, for the Keccak-p[800,12] variant
of our library, are summarized in Table 4.1. It can be seen that even our
simple runtime overhead estimation approach already provides quite reliable
results on the benchmarked hardware. Considering that only the total number
of measurements and the total number of measured bytes has to be known,
the overhead of arbitrary hybrid schemes can therefore be estimated using the
formula. Alternatively, when the tolerable overhead is constrained by a maximum
value, inverting the formula and deriving the required performance characteristics
for the attestation implementation is also possible.

1https://github.com/eembc/coremark

4.4. Evaluation 82

4.4.3 Memory
In addition to runtime, we determined the code size of our attestation routines
and the amount of data stored in memory. The respective results are visualized
in Table 4.2. It shows that the size of data held in memory is dominated by
the size of the attestation state. In terms of code size, the implementations for
the different state sizes differ considerably. For example, the implementation
using a 1600-bit Keccak state is with 5472 bytes the largest due to extensive loop
unrolling, more complex rotation operations, and additional memory accesses.
The implementations using the 400- and 800-bit Keccak permutations, on the
other hand, require around 3500 bytes for code, which is only 64 % of the code
size for Keccak-p[1600,12].

4.4.4 Further Remarks
As shown in our estimation formula, the attestation runtime overhead does not
only depend on the performance characteristics of the implementation, but also
on the selected attestation methodology and the attested application.

We therefore deliberately refrain from directly comparing the performance
and overhead of our prototype with related work. On the one hand, in terms of
graph attestation, there is yet no related work which features similar capabilities.
On the other hand, the software that has been attested by related work is
either not available or hardly meaningful. The commonly referenced open
syringe pump Arduino code2, for example, has to be heavily modified to be
runnable on custom hardware which defeats the purpose of being comparable.
Moreover, it only consists of a few nested loops with function calls and can easily
be replaced by any benchmark program. Finally, for path attestation in the
context of physical attacks, all the related work we are aware of solely relies on
hardware implementations. Considering that our prototype only implements the
SCE scheme in hardware and the remaining attestation functionality in hardly
optimized software, no sensible results are expected from such a comparison.

2https://github.com/naroom/OpenSyringePump/blob/master/syringePump/
syringePump.ino

Table 4.2: Memory requirements.

Code Size Data Size
[bytes] [bytes]

Keccak-p[400,12] 3,464 64
Keccak-p[800,12] 3,540 112
Keccak-p[1600,12] 5,472 216

https://github.com/naroom/OpenSyringePump/blob/master/syringePump/syringePump.ino
https://github.com/naroom/OpenSyringePump/blob/master/syringePump/syringePump.ino

4.5. Conclusion 83

4.5 Conclusion
Remote attestation provides a tool to prove the authenticity of an embedded
device to a remote user. However, current remote attestation schemes have
significant drawbacks. While static attestation schemes are vulnerable to TOC-
TOU attacks, path attestation is able to detect runtime attacks, but requires the
transmission of the whole execution path for verification.

To overcome these issues, this work presented a novel approach to remote
attestation for embedded devices in the presence of both software and hardware-
based attacks. In this concept, we leveraged the properties of SCE techniques
to introduce graph attestation. Graph attestation is a highly efficient variant
to attest the execution of an embedded device. In particular, graph attestation
makes use of the instruction- and address-dependent secret that is used for
instruction stream decryption within SCE to prove that the execution has been
valid until a certain checkpoint. This approach is highly flexible and allows
to trade off between performance and detection accuracy. Namely, a single
checkpoint at the end of a program is sufficient to attest the validity of the
program execution up to that point. On the other hand, placing checkpoints at
arbitrary positions in the program, possibly even at every single instruction, is
feasible as well and permits to implement full path attestation on top of graph
attestation.

We further presented an approach to perform online license checks in embedded
devices by extending our remote attestation concept based on SCE. In particular,
our licensing extension provides a mechanism to remote parties that allows to
unlock the execution of protected code snippets at the embedded device by using
special licensing tokens. Namely, only if the embedded device executed correctly
and remote attestation yields a positive result, the device is able to decrypt
these tokens and to inject them into the SCE scheme to enable execution of the
protected code. Otherwise, correct decryption and application of the licensing
token is impossible for the embedded device.

Finally, we implemented our remote attestation concept using a sponge-based
MAC and the Keccak permutation with different state sizes. We evaluated
our implementations on an 32-bit RISC-V processor supporting SCFP-encoded
software regarding runtime and code size. This evaluation showed that on this
platform the 800-bit Keccak permutation is the most suitable for attestation as
it yields a code sized as small as 3540 bytes and a throughput of efficient 78 cpb
when performing measurements.

Part II

Counteracting Physical
Attacks on the Memory

System

84

85

Efficiently and securely interacting with memory is, after the actual computa-
tion, the second most important task of a processor. Unfortunately, contemporary
processors also fail in this domain as soon as physical characteristics of the device
can be monitored (e.g., side-channel attacks) or direct access to the memory is
granted (e.g., probing of PCB signals).

This second part of the thesis, hence, focuses on the protection of arbitrary
data in the memory subsystem by presenting a hardware framework for memory
encryption and a side-channel hardened cache architecture. The content of Part II
is largely based on two publications [Wer+17; Wer+19b]. The enumeration below
maps the individual chapters to the respective papers, clarifies my contributions,
and acknowledges the work of my collaborators.

• Chapter 5 is primarily based on the following publication that was presented
at FPL 2017 in Ghent (Belgium):
Mario Werner, Thomas Unterluggauer, Robert Schilling, David Schaf-
fenrath, and Stefan Mangard. “Transparent memory encryption and au-
thentication.” In: Field Programmable Logic and Applications – FPL. 2017,
pp. 1–6. doi: 10.23919/FPL.2017.8056797

I am the main author of this paper, wrote the majority of the text, built the
proof of concept, designed and implemented large parts of the presented
HDL framework, and performed all benchmarks. Thomas Unterluggauer
contributed to the text, the design, and heavily to the implementation of
the final framework. Robert Schilling and David Schaffenrath implemented
a prior memory encryption hardware module. While the initial implemen-
tation had to be dropped due to design issues, valuable insights on the
problem domain were gained. Stefan Mangard provided the original idea
on investigating memory encryption on Zynq FPGAs.

• Chapter 6 is primarily based on the following publication that was presented
at the USENIX Security Symposium 2019 in Santa Clara (California, USA):
Mario Werner, Thomas Unterluggauer, Lukas Giner, Michael Schwarz,
Daniel Gruss, and Stefan Mangard. “ScatterCache: Thwarting Cache
Attacks via Cache Set Randomization.” In: USENIX Security Symposium.
2019, pp. 675–692. url: https://www.usenix.org/conference/usenixsecur
ity19/presentation/werner

Again, I am the main author of this paper, contributed the initial idea,
and lead the design of ScatterCache in the numerous design discussions.
Furthermore, I wrote a major part of the text, built the Yocto-based software
stack, and performed final evaluations with gem5. Thomas Unterluggauer
contributed to the text, performed the initial gem5 simulations, and helped
greatly in shaping the concept as well as the analytical analysis. Lukas Giner
implemented the custom cache simulator, performed the SPEC evaluations,
and delivered numerical analysis results including the respective paper text.
Michael Schwarz, Daniel Gruss, and Stefan Mangard worked on the text
and provided invaluable guidance on the concept in terms of feasibility and
security implications.

https://doi.org/10.23919/FPL.2017.8056797
https://www.usenix.org/conference/usenixsecurity19/presentation/werner
https://www.usenix.org/conference/usenixsecurity19/presentation/werner

5
Transparent Memory Encryption and

Authentication

Techniques like disk/firmware encryption [Wil15], and to a certain degree secure
boot [San15], are established concepts for protecting software Intellectual Property
(IP) as well as sensitive data in Non-Volatile Memory (NVM). However, basically
every modern device additionally relies on substantial amounts of unprotected
Random-Access Memory (RAM) to process the increasing amounts of data.
Subsequently, attackers with physical access to the RAM are able to read from
and/or tamper with sensitive data.

There already exist several encryption and authentication techniques to
protect data in RAM. The concurrently developed SCM [Cle+17c] approach, for
example, provides authentication for read-only memory—usable for code. Also,
CBC-ESSIV [Fru05], XEX [Rog04], XTS [Sto08], and the counter mode [DK06;
Rog+07; SOD05; Yan+06] have been proposed for RAM encryption. While
these encryption modes ensure confidentiality, none of them provides authenticity.
Even worse, certain modes like counter mode encryption even lose confidentiality
in case of active attacks such as spoofing, splicing and replay attacks [Elb+09].
In spoofing attacks, an attacker simply replaces an existing memory block with
arbitrary data, in splicing attacks, the data at address A is replaced with the
data at address B, and in replay attacks, the data at a given address is replaced
with an older version of the data at the same address. To protect against these
active attacks, various tree-based RAM authentication techniques, e.g., Tamper
Evident Counter (TEC) trees [Elb+07], exist.

While previous work [DK06; Rog+07; SOD05; Yan+06] continually improved
RAM encryption techniques, virtually all lack practical implementations and do
only simulations to estimate the performance. On the other hand, recent imple-

86

5.1. RAM Encryption Framework 87

mentations of RAM encryption and authentication as in, e.g., Intel’s SGX [Gue16],
AMD [KPW16], remain closed source. Yet, there is a strong need for freely avail-
able implementations given the threat of physical attacks and the trend towards
custom hardware featuring embedded RISC-V System-on-Chips (SoCs).

Contribution. In this chapter, we present MEMSEC, a modular open-source
framework1 for transparent RAM encryption and authentication which is config-
urable for different ciphers, cryptographic modes, and block sizes. The building
blocks of our framework are written in VHDL and, while being developed for Field
Programmable Gate Arrays (FPGAs), are also suitable for Application Specific
Integrated Circuit (ASIC) designs. We evaluate our framework to give the first
comprehensive comparison of performance results of practical implementations of
RAM encryption and authentication in various cryptographic configurations. For
evaluation, we use the Xilinx Zynq platform and let the ARM Central Processing
Unit (CPU) access the memory via our transparent memory encryption module
in the FPGA. At 50 MHz, our implementations of different cryptographic modes
using Prince [Bor+12a; Bor+12b] and AES give a performance upper and lower
bound of 187 and 35 MB/s read bandwidth, respectively. We further show that
the Authenticated Encryption (AE) cipher Ascon [Dob+16] gives very practical
results for RAM encryption and authentication when replay attacks are not
concerned. For applications further threatened by replay attacks, we provide
an Ascon-based implementation of the TEC tree, reaching up to 47 MB/s read
bandwidth.

Outline. This chapter is organized as follows. Section 5.1 describes the chal-
lenges and introduces the concepts of our memory encryption framework. Authen-
tication trees, including the implementation using our framework, are discussed
in Section 5.2. Finally, the evaluation and conclusion are content of Section 5.3
and Section 5.4.

5.1 RAM Encryption Framework
RAM is in general a very fast and heavily used system resource. Transparently
encrypting it, by placing an encryption pipeline between CPU and memory
controller (outlined in Figure 5.1), is therefore a challenging task. This section
discusses the various challenges involved and gives details on the functionality
and design rationales behind our framework. Furthermore, the application of
the framework to achieve transparent memory encryption for the AXI4 bus is
discussed.

5.1.1 Challenges
In modern FPGAs, RAM is typically exposed to the programmable logic via
memory controllers which feature standard bus interfaces (e.g., AXI4, Avalon, . . .).

1https://github.com/IAIK/memsec

https://github.com/IAIK/memsec

5.1. RAM Encryption Framework 88

PL

PS
CPU

with Caches

Memory Encryption Pipeline

Memory
Controller

D
D

R
M

em
ory

Figure 5.1: Zynq platform with memory encryption module.

Using such an interface, reading from or writing to memory can be performed
by simply issuing the respective bus request. Even though in practice most of
the memory requests have a well defined format (e.g., processor cache lines),
there are in general no restrictions regarding alignment and request size. On
the other hand, cryptographic primitives always have alignment and block size
requirements which have to be matched. These diverging constraints make the
transparent encryption of RAM quite challenging. Additionally, some ciphers and
modes of operation additionally require metadata (e.g., counters, nonces, tags)
to operate correctly. Processing this metadata at the correct time is essential
to achieve good performance and complicates the issue of data alignment even
further.

Finally, many optimizations and peculiarities of the used bus architecture
itself have to be considered. A common performance tweak to speed up cache line
fills is, for example, the use of wrapping burst. Such burst are problematic given
that the requested data order does not match the order of the data in memory.
Other peculiarities, which have to be considered for memory encryption, are
for example write strobes, narrow transfers, and even complete interface width
mismatches. In summary, every possible request which can be issued via the bus
interface also has to be supported with transparent memory encryption in place.

5.1.2 Framework and Application to AXI4
Even though each individual challenge is minor, the overall resulting complexity
is quite high. To cope with this complexity, a divide and conquer approach is
used in our framework. The result is a comprehensive collection of modular
building blocks which individually implement very limited functionality. However,
arbitrary memory encryption units, with support for any cipher and encryption
mode, can be built by arranging the individual modules in a pipeline structure.

Key to this flexibility are fully synchronized, unidirectional stream interfaces
to interconnect the building blocks. On the majority of blocks, these stream
interfaces receive and forward metadata (e.g., addresses, lengths, flags, . . .) as
well as a configurable amount of memory data (i.e., depending on the external
interface widths). The synchronization ensures that neither timing issues nor
congestion cause data to be lost. Furthermore, registers and FIFOs can be placed

5.1. RAM Encryption Framework 89

Request
Modifier

Memory
Reader Decryption Wrap Burst

Cache
Read

Responder

Data
Modifier Encryption

Memory
Writer

Data
Filter

Memory
Write Port

CPU
Write Port

Memory
Read Port

CPU
Read Port

C
P

U
A

d
d
r.

 P
o
rt

Figure 5.2: Simple AXI4 memory encryption pipeline which processes write requests
using a RMW approach.

at arbitrary positions to cut combinatorial paths and to decouple the individual
modules for better performance.

Transparent memory encryption for the AXI4 bus can, for example, be realized
using a pipeline as shown in Figure 5.2. The depicted pipeline provides one slave
and one master interfaces (see boxes with white background). The boxes which
are shaded in light gray are used for reading from encrypted memory. Blocks
which are shaded in dark gray are dedicated to writing to encrypted memory.

The slave interface (denoted as CPU) receives unencrypted requests that
are serviced like without memory encryption. The master interface (denoted
as Memory) on the other hand is used to actually store the encrypted data to
the physical memory. The pipeline in Figure 5.2 is able to deal with all the
previously discussed challenges and supports the use of arbitrary block-based
cryptographic primitives or modes. Alignment and block size mismatches are
addressed by artificially widening every request during request modification. For
memory writes, this leads to the need for a Read-Modify-Write (RMW) approach
when writing small data fragments. Interestingly, a RMW approach is required
for AXI4 in any case to properly support write strobes. Therefore, all memory
writes in this example pipeline are performed as RMW, which even permits to
reuse the request modification, the memory reader, and the decryption for writes.
The following types of building block categories are provided by the framework:

Bus Interface

Depending on the FPGA vendor, different types of bus interfaces are used to
interact with memory. To outsource this dependency, interface converters are
needed to establish the connection between the external bus interfaces and the
framework-internal stream interface. The bus interface plays a major role in the
framework on both the unencrypted slave and the encrypted master side. On
the slave side, converters are involved in the translation of the initial request,
the decoding of written data, the encoding of read data, and the error reporting.
Similarly, on the master side, support for performing memory reads and writes
(e.g., request issuing, data encoding, response processing, . . .) is required.

5.1. RAM Encryption Framework 90

CPU Memory Request

Mem. Start

block 1 block 2

Mem. End

C
P

U
 M

em
o
ry

 L
a
y
o
u
t

P
h
y
si
ca

l
M

em
o
ry

physical block 1

Split Request

block 3

DataNonce TagDataNonce TagDataNonce TagDataNonce Tag

Mem. EndMem. Start

physical block 2 physical block 3

block 0

physical block 0

Figure 5.3: Request modification for a nonce based encryption and authentication
scheme like Ascon [Dob+16]. CPU memory requests are split into chunks
with additional alignment to incorporate metadata for the AE scheme.

Request Modification

Probably the most important part of the memory encryption pipeline is request
modification. In this step, requests from the slave interface are translated to the
requests on the master interface. This translation takes the memory alignment
and block size requirements of the employed cipher mode into account and widens
the requests accordingly. Additionally, also metadata is considered in cases where
the encryption scheme is not length preserving and even additional requests can
be injected into the pipeline when needed.

An example for a translation, suitable for a nonce-based authenticated en-
cryption scheme, is shown in Figure 5.3. In the first step, the actually received
CPU request is split based on the data block size of the cryptographic primitive.
This splitting determines which logical blocks are affected by the request and
have to be fetched. In the second step, taking into account the logical blocks
and the amount of required metadata, it is then possible to determine the actual
physical memory request. Note that during request modification only the size of
the metadata is important. The actual semantic and positioning of the metadata
within the physical block on the other hand is not.

En-/Decryption

Encryption and decryption blocks contain the actual ciphers which can typically
be further decomposed into a cryptographic primitive and a suitable mode of
operation. The cipher blocks only have to support encryption/decryption of
memory requests with alignment and block size appropriate for the respective
primitive, which greatly reduces implementation complexity. Furthermore, the
actual layout of each block (e.g., what bytes are metadata) can be freely defined
by the cipher blocks. However, to keep latency as low as possible it is advised to
interleave the metadata with the ciphertext. By doing so, the metadata arrives
at the cipher exactly in the moment it is actually needed. Figure 5.3 shows such
an interleaving for a nonce based authenticated encryption scheme like Ascon.
In this example, the nonce, used for initialization, is placed at the beginning and
the tag, used for verification, is placed at the end of each block.

5.2. Authentication Trees 91

Data Stream Modification

Operating with the data which passes through the pipeline is another important
part of the framework. Therefore, various building blocks which transform the
data stream are provided. This includes support for injecting new data beats into
the stream, for dropping existing data beats, for zero initializing whole requests,
for filtering data based on the address, and for replacing individual bytes by
taking into account address and write strobe information. Furthermore, the
support for reordering individual data beats, which is needed to process wrapping
bursts efficiently, can be assigned to this category of building blocks.

Miscellaneous

In addition to the main building blocks, also a comprehensive selection of support-
ing building blocks is provided by the framework. These blocks provide common
functionality to the main blocks and are further handy for newly developed
components. Examples for such supporting blocks are synchronization primitives
for handshake signals, register stages with synchronization, and serialization as
well as deserialization blocks for data rate conversions.

5.1.3 Optimizations
Performance optimization is in general a tough challenge given that detailed
knowledge about the usage profile is required. However, some simple tweaks
can also be performed by exploiting knowledge about the used hardware. For
example, a CPU cache with AXI4 interface typically refills cache lines by using
wrapping bursts to decrease latency. The framework’s WrapBurstCache permits
to implement such bursts efficiently (i.e., single memory read) by reordering data
beats within the pipeline.

Another important property of the framework regarding optimization is that
each building block is highly configurable via VHDL generics. This not only
is a necessity to support various ciphers, but also permits to perfectly adopt a
memory encryption pipeline to the expected workload. Aligning the cipher block
size (excl. metadata) with the expected request size (e.g., cache line size), for
example, typically maximizes the performance.

Finally, requesting data from and writing data to the memory controller has
been optimized. In particular, separate bus interface blocks are used for issuing
requests as well as for sending and receiving data. This separation permits to
place each operation at the earliest possible point into the pipeline which reduces
latency. Furthermore, even multiple sequential requests (e.g., several reads) can
be scheduled before any data block on the first request has been processed.

5.2 Authentication Trees
In this section we extend our pipeline in Figure 5.2 to implement authentication
trees that provide replay protection.

5.2. Authentication Trees 92

Data Tag

Nonce Tag

Data Tag Data Tag Data Tag

Secure Root (on chip)

Memory

Nonce

Nonce Nonce TagNonce

Nonce TagNonce

Figure 5.4: Binary TEC tree.

Data Tag Nonce Tag

Tree NodesData Nodes

NonceP
h
y
si
ca

l
M

em
o
ry

Mem. Start Mem. End

Figure 5.5: Physical memory layout of the nodes in a binary TEC tree.

5.2.1 Requirements
The pipeline depicted in Figure 5.2 facilitates the implementation of various
variants of RAM encryption and authentication that provide RAM confidentiality
and protection against active RAM spoofing and splicing attacks. However,
many applications also require protection against replay attacks, where an active
attacker replaces parts of the memory with valid ciphertexts (and tags) observed
at a previous point in time. Such feature can be obtained from using an AE
scheme like Ascon in an extended version of the pipeline in Figure 5.2. Namely,
this pipeline must store all nonces securely on the FPGA such that they cannot be
modified by attackers. In this way, nonces cannot be replayed and any malicious
modification is detected. However, since the amount of available secure storage
is typically limited, RAM authentication with replay protection usually relies on
authentication trees. By storing every block in RAM within an authentication
tree, only the tree root must be stored in a trusted environment. Since the tree
root reflects the current state of the tree and is authentic, any tampering in RAM
can be detected.

5.2.2 Functionality
The authentication tree used in this work is a variant of the TEC [Elb+07] tree
as depicted in Figure 5.4. Hereby, the data in RAM is split into blocks and the
blocks are authenticated and encrypted using the AE cipher Ascon. The nonces
required for AE are recursively stored in a tree where all nodes are authenticated
and encrypted as well. The root nonce is stored on the trusted FPGA chip. The

5.2. Authentication Trees 93

Request
Modifier

Cache
Fetcher

Secure
Root

Memory
Reader

Nonce
Injector Decryption Data Filter Wrap Burst

Cache
Read

Responder

Data
Modifier Encryption

Memory
Writer

Nonce
Cache

Nonce
Processing

Cache
Writer

CPU
Addr. Port

Memory
Write Port

CPU
Write Port

Memory
Read Port

CPU
Read Port

Figure 5.6: Memory encryption and authentication pipeline.

tree nodes themselves are stored after the data nodes and are located at the end
of the RAM as visualized in Figure 5.5.

To support TEC trees, the pipeline in Figure 5.2 is extended as shown in
Figure 5.6. Its basic data flow is thus identical. Light and dark shades denote
modules required for read and write operations, respectively. Modules required
to support authentication trees are depicted with dashed edges. For both read
and write accesses, the pipeline traverses the tree in a single pass from the root to
the respective data leaf node by decrypting (and updating) the nonce of the next
lower level and verifying (and computing) the respective node’s tag. Hereby, the
RequestModifier injects all tree node requests additionally required to decrypt
and authenticate the data requested by the CPU. Besides, authentication errors
of all nodes accessed in the read part are accumulated to form the CPU response.

However, for uninitialized memory tag verification will typically fail. Hence,
zero-valued nonces are used to tag uninitialized memory. This works as follows.
The root nonce is initialized zero upon startup. On read accesses, verification
errors are suppressed whenever a zero-valued nonce is encountered on the path
from the root to the accessed leaf. On write accesses, the plaintexts of all nodes
are initialized zero on the path from the root to the leaf from the point on when
a zero nonce is encountered, and the actual write path is written as desired. In
this way, uninitialized subtrees are automatically assigned a zero nonce.

5.2.3 Optimizations
Authentication trees as in Figure 5.4 have significant memory and performance
overheads due to the processing of the additional tree nodes. An important
parameter to reduce this overhead is the tree arity since it has direct influence
on the tree height. The implementation thus allows the configuration of different
tree arities to find the setup with the lowest overhead.

Furthermore, on the implementation side, the design in Figure 5.6 uses a
NonceCache to optimize read performance. The NonceCache is directly mapped
using the least significant RAM address bits and can be configured for different
sizes. However, the NonceCache does not improve write performance. An
optimization that improves both read and write accesses are multiple tree roots
in the SecureRoot. While multiple roots increase the demand for secure on-chip

5.3. Evaluation and Discussion 94

storage, they effectively reduce the tree height. Our implementation can be
configured for an arbitrary number of on-chip roots.

5.3 Evaluation and Discussion
The proposed framework has been evaluated using a ZedBoard featuring a Xilinx
Zynq XC7Z020 SoC and 512 MB DDR3 RAM. This SoC provides a dual core
ARM Cortex-A9 Processing System (PS) and a Xilinx Artix-7 Programmable
Logic (PL) which are connected using AXI interfaces. Figure 5.1 shows how
the encryption pipelines from the previous sections are placed into the PL to
perform transparent memory encryption. To ease comparison, all designs have
been evaluated at 50 MHz FPGA frequency, provide 256 MB of protected memory
to the ARM processors in the PS, and use the 32-bit GP0 interface to the CPU
as well as the 64-bit HP0 interface to the memory. Note that operating the
32-bit interface at 50 MHz limits the maximum achievable bandwidth between
processor and memory to 200 MB/s. As benchmarks, tinymembench2 0.3 and
lmbench 3.0-a9 [MS96] have been used on top of the Xilinx Linux kernel3 4.4 (git
tag 2016.2). Note that not only the benchmarks, but also the operating system
itself has been executed within the transparently encrypted memory.

Cipher Modes and Configurations

The performance of the design in Figure 5.2 has been evaluated with the Ascon
AE cipher (64-bit nonce and tag) as well as the block ciphers Prince and AES in
ECB, CBC-ESSIV, and XTS mode. Additionally, the design in Figure 5.6, which
provides full memory encryption and authentication using an 8-ary TEC tree
with 1024 roots, has been measured using Ascon as the cryptographic primitive.
Depending on the cipher, different implementation strategies (Prince = fully
pipelined, Ascon + AES = round based) have been used.

However, we stress that these cryptographic primitives have only be chosen
to evaluate how the performance of the encryption pipeline is affected by the
cipher/mode. Namely, from the security point of view, we pronounce against
using AES and Prince in ECB mode. Furthermore, using Prince in CBC and XTS
mode is also not recommended given that the cipher does not offer related-key
security. In particular, both CBC and XTS use Prince in a related-key setting
where the whitening key is either eliminated or tweaked.

All configurations have been evaluated in their most promising parameteriza-
tion. In most cases, this corresponds to aligning the block size of the cryptographic
mode with the processor’s last-level cache line size (32 bytes). The only exception
is the Ascon-based TEC tree, which is configured with a data block size of
64 bytes.

2https://github.com/ssvb/tinymembench
3https://github.com/Xilinx/linux-xlnx.git

https://github.com/ssvb/tinymembench
https://github.com/Xilinx/linux-xlnx.git

5.3. Evaluation and Discussion 95

ASCON
ASCON
TREE

Prince
ECB AES

ECB

Prince
CBC AES

CBC

Prince
XTS AES

XTS

0

50

100

150

200

10
5

47

16
3

60

13
4

36

13
4

36

10
3

14

10
5

61

96

35

96

35Ba
nd

w
id
th

[M
B/

s]
Read
Write

Figure 5.7: Memory bandwidth determined with tinymembench (NEON read
prefetched (64 bytes step), NEON fill).

Bandwidth and Parameter selection

Figure 5.7 depicts the memory bandwidth of the various ciphers and modes of
operation. The results for Prince clearly dominate the comparison, reaching
between 82 % and 67 % of the maximum possible read bandwidth. This is due to
the fully pipelined implementation which features only two cycles latency. The
performance achieved with Prince ECB is in fact even comparable to using the
pipeline without any cipher and for rate conversion only.

Regarding write bandwidth, all modes are capped at around 105 MB/s al-
though the non-tree modes are supposed to have identical read and write perfor-
mance. As it turns out, the reason for the observed write bandwidth limit is not
the encryption pipeline itself, but the sequential way write requests are issued
from the CPU cache in our setup. To achieve full write bandwidth, multiple
parallel write requests would be needed.

Compared to Prince, the bandwidth results for the round-based AES imple-
mentation show the other side of the spectrum for the ECB, CBC, and XTS
modes. Note that the use of multiple AES cores in parallel would be possible
to increase the bandwidth of the ECB and XTS mode. CBC on the other hand
would not benefit from additional cipher hardware at all given its algorithmic
dependencies.

Ascon covers the middle ground regarding bandwidth, but additionally pro-
vides spoofing and splicing protection. Interestingly, also the replay-protected
Ascon TEC-tree performs comparable to the AES modes regarding read band-
width. The write bandwidth of the tree on the other hand is worse. However, even
this number is comprehensible considering that, in the evaluated parameteriza-
tion, writing between 1 and 32bytes of memory actually requires to read, decrypt,
encrypt, and write 360 bytes. Decreasing the size of the protected memory as

5.3. Evaluation and Discussion 96

1 2 4 8 16 320

50

100

150

200

40

77

13
4

98

64

3840

77

13
4

16
2

11
1

69

Cipher Blocks per Sector

R
ea
d
Ba

nd
w
id
th

[M
B/

s] Standard
Double

Figure 5.8: Memory read bandwidth determined with tinymembench of Prince CBC
with different block sizes and cache controller configurations.

well as increasing the cache line size of the processor are ways to improve write
performance for the tree.

At least for reads, the effect of bigger cache line sizes can be evaluated by
enabling the double line fill feature of the cache controller. Due to the bigger
requests, read bandwidth is typically increased. With double line fill enabled,
Prince-ECB even reaches up to 94 % of the possible bandwidth (i.e., 187 MB/s).
However, the correct parameterization of the pipeline is important as shown in
Figure 5.8. Unfortunately, the double line fill feature cannot replace a cache with
doubled line size since only read requests are widened. Namely, write requests
still have standard size and scale like standard read requests. Operating the
encryption pipeline with double line fill enabled and parameters that increase
read performance thus typically reduces write performance.

Latency

Compared to cache accesses, RAM accesses are slow and adding transparent
RAM encryption further exacerbates this situation. However, as shown in
Figure 5.9, the actual impact on the latency strongly depends on the used
cryptographic primitive. The 265 ns from the Prince ECB implementation again
can be considered as an estimate for the latency cost of our memory encryption
framework. However, taking the real memory latency of the hardware (∼ 80 ns)
into account, the actual overhead of the FPGA design is around 185 ns. At
our evaluation frequency (50 MHz), this corresponds to a minimum overhead of
merely 9 cycles. The Ascon-based TEC tree on the other hand has the highest
latency of all evaluated designs. Yet, it has to be put into perspective that the
tree mode has to decrypt much more data (4 tree nodes + 1 data node).

5.3. Evaluation and Discussion 97

ASCON
ASCON
TREE

Prince
ECB AES

ECB

Prince
CBC AES

CBC

Prince
XTS AES

XTS

0

500

1,000

1,500

2,000

34
3

1,
55

4

26
5

57
3

30
2

92
7

29
9

92
7

La
te
nc

y
[n

s]

Figure 5.9: Memory read latency determined with lmbench (lat_mem_rd 8M).

Frequency

The maximum clock frequency is also an important property given that higher
frequencies increase bandwidth and decrease latency. While we evaluated all
designs at the same frequency of 50 MHz, all of them can be clocked higher.
Namely, enabling optimizations in the Electronic Design Automation (EDA)
tool (Vivado) already increases the maximum frequency of the designs to values
between and 63 MHz and 75 MHz (up to +50 %). Nevertheless, even then, the
critical path is mainly determined by routing delay. This is due to the fact that
the used Artix 7 FPGA (speed grade 1) is an entry model. The next stronger
Zynq XC7Z030 speed grade 1 model with Kintex 7 FPGA, for example, can
already operate the slowest design (Ascon tree) at 93 MHz (= +86 %). Using
an XC7Z030 with speed grade 3 even yields a maximum frequency of 126 MHz
(= +152 %) for the tree design.

FPGA Utilization

Figure 5.10 visualizes the consumed hardware resources on our target SoC FPGA
in terms of flip flops and lookup tables. The XC7Z020 features a total of 53,200
lookup tables of which between 8.9 % (Prince ECB) and 19.2 % (Ascon tree)
are occupied by our designs. Similarly, between 2.3 % and 4.4 % of the 106,400
available flip flops are used. The use of the 36 kbit block RAMs is also negligible
(4.5 blocks of the available 140) given that they are solely used in the Ascon tree
design for the tree roots and as simple nonce cache. Considering that the used
FPGA is more or less an entry-level device, more than enough resources remain
available for other use cases.

5.4. Conclusion 98

ASCON
ASCON
TREE

Prince
ECB AES

ECB

Prince
CBC AES

CBC

Prince
XTS AES

XTS

0

0.5

1

·104

4,
46

2

4,
71

7

2,
48

5

3,
17

9

2,
67

6 3,
70

0

2,
75

3 3,
70

8

8,
43

0 10
,2

26

4,
73

2 6,
12

9

5,
59

5

8,
00

7

5,
53

8

7,
77

4

Flip Flops
Lookup Tables

Figure 5.10: FPGA Utilization of the used Xilinx Zynq XC7Z020 SoC.

5.4 Conclusion
In this chapter, we presented an open-source framework of modular building blocks
to implement RAM encryption solutions. A simple, fully synchronized stream
interface is used to connect the individual blocks and permits to easily replace
specific components as needed. As the result, realizing arbitrary encryption
pipelines is as simple as connecting the needed blocks according to the data
flow graph of the design. The evaluation, using various cipher primitives and
modes, shows that our framework is very flexible and can easily support differing
block sizes and memory alignment constraints. An example that showcases this
flexibility is that also novel cryptographic modes, like the side-channel protected
MEAS [UWM19] scheme, can be implemented successfully with our framework.
The fact that the winning team of MITRE’s eCTF security competition4 in
2019 employed our open-source framework in their design further underlines its
usefulness. Finally, the results demonstrate that retrofitting memory encryption
to Zynq SoCs is feasible and that Ascon (with and without tree) is a decent choice
for memory encryption, when authenticity is desired in addition to confidentiality.

4https://mitrecyberacademy.org/competitions/embedded/

https://mitrecyberacademy.org/competitions/embedded/

6
ScatterCache: Thwarting Cache
Attacks via Cache Set Randomization

Caches are core components of today’s computing architectures. They bridge the
performance gap between Central Processing Unit (CPU) cores and a computer’s
main memory. However, in the past two decades, caches have turned out to be
the origin of a wide range of security threats [Ber05; Bul+18; GSM15; Koc+19;
Koc96; Lip+18b; Liu+15; OST06; YF14]. In particular, the intrinsic timing
behavior of caches that speeds up computing systems allows for cache side-channel
attacks (cache attacks), which are able to recover secret information.

Historically, research on cache attacks primarily focused on cryptographic
algorithms [Ber05; Liu+15; OST06; YF14]. More recently, however, cache
attacks like Prime+Probe [Liu+15; Mau+17; OST06; Per05; Sch+17] and
Flush+Reload [GSM15; YF14] have also been used to attack address-space-
layout randomization [Gra+17; Gru+16a; JLK16], keystroke processing and
inter-keystroke timing [Gru+16b; GSM15; Sch+18c], and general-purpose compu-
tations [Zha+14]. For shared caches on modern multi-core CPUs, Prime+Probe
and Flush+Reload even work across cores executing code from different security
domains, e.g., processes or virtual machines.

The most simple cache attacks, however, are covert channels [Mau+15a;
Mau+17; WXW12]. In contrast to a regular side-channel attack, in a covert chan-
nel, the “victim” is colluding and actively trying to transmit data to the attacker,
e.g., running in a different security domain. For instance, Meltdown [Lip+18b],
Spectre [Koc+19], and Foreshadow [Bul+18] use cache covert channels to transfer
secrets from the transient execution domain to an attacker. These recent exam-
ples highlight the importance of finding practical approaches to thwart cache
attacks.

99

100

To cope with cache attacks, there has been much research on ways to identify
information leaks in a software’s memory access pattern, such as static code [DK17;
Doy+13; KMO12; MWK17] and dynamic program analysis [Ira+17; Wei+18;
Xia+17; ZHS16]. However, mitigating these leaks both generically and efficiently
is difficult. While there are techniques to design software without address-
based information leaks, such as unifying control flow [Cop+09] and bitsliced
implementations of cryptography [Kön08; KS09; RSD06], their general application
to arbitrary software remains difficult. Hence, protecting against cache attacks
puts a significant burden on software developers aiming to protect secrets in the
view of microarchitectural details that vary a lot across different Instruction-Set
Architecture (ISA) implementations.

A different direction to counteract cache attacks is to design more resilient
cache architectures. Typically, these architectures modify the cache organization
in order to minimize interference between different processes, either by breaking
the trivial link between memory address and cache index [Gal+19; Qur18;
Tri+18; WL07; WL08] or by providing exclusive access to cache partitions for
critical code [Pag05; Raj+09; WL07]. While cache partitioning completely
prevents cache interference, its rather static allocation suffers from scalability and
performance issues. On the other hand, randomized cache (re-)placement [WL07;
WL08] makes mappings of memory addresses to cache indices random and
unpredictable. Yet, managing these cache mappings in lookup tables inheres
extensive changes to the cache architecture and cost. Finally, the introduction of
a keyed function [Qur18; Tri+18] to pseudorandomly map the accessed memory
location to the cache-set index can counteract Prime+Probe attacks. However,
these solutions either suffer from a low number of cache sets, weakly chosen
functions, or cache interference for shared memory and thus require to change
the key frequently at the cost of performance.

Hence, there is a strong need for a practical and effective solution to thwart
both cache attacks and cache covert channels. In particular, this solution should
(1) make cache attacks sufficiently hard, (2) require as little software support as
possible, (3) embed flexibly into existing cache architectures, (4) be efficiently
implementable in hardware, and (5) retain or even enhance cache performance.

Contribution. In this chapter, we present ScatterCache, which achieves
all these goals. ScatterCache is a novel and highly flexible cache design that
prevents cache attacks such as Evict+Reload and Prime+Probe and severely
limits cache covert channel capacities by increasing the number of cache sets
beyond the number of physically available addresses with competitive performance
and implementation cost. Hereby, ScatterCache closes the gap between
previous secure cache designs and today’s cache architectures by introducing a
minimal set of cache modifications to provide strong security guarantees.

Most prominently, ScatterCache eliminates the fixed cache-set congruences
that are the cornerstone of Prime+Probe attacks. For this purpose, Scatter-
Cache builds upon two ideas. First, ScatterCache uses a keyed mapping
function to translate memory addresses and the active security domain, e.g.,
process, to cache set indices. Second, similar to skewed associative caches [Sez93],

6.1. Background 101

the mapping function in ScatterCache computes a different index for each
cache way. As a result, the number of different cache sets increases exponentially
with the number of ways. While ScatterCache makes finding fully identical
cache sets statistically impossible on state-of-the-art architectures, the complexity
for exploiting inevitable partial cache-set collisions also rises heavily. The reason
is in part that the mapping of memory addresses to cache sets in Scatter-
Cache is different for each security domain. Attacks on ScatterCache are
by construction probabilistic and require that targeted memory accesses can be
observed many times for both, the actual attack as well as the needed profiling.

Additionally, ScatterCache effectively prevents Flush+Reload-based
cache attacks, e.g., on shared libraries, as well. The inclusion of security do-
mains in ScatterCache and its mapping function preserves shared memory
in Random-Access Memory (RAM), but prevents any cache lines to be shared
across security boundaries. Yet, ScatterCache supports shared memory for
inter-process communication via dedicated separate security domains. To achieve
highest flexibility, managing the security domains of ScatterCache is done by
software, e.g., the operating system. However, ScatterCache is fully backwards
compatible and already increases the effort of cache attacks even without any
software support. Nevertheless, the runtime performance of software on Scat-
terCache is highly competitive and, on certain workloads, even outperforms
cache designs implemented in commodity CPUs.

ScatterCache constitutes a comparably simple extension to cache and
processor architectures with minimal hardware cost: ScatterCache essentially
only adds additional index derivation logic, i.e., a lightweight cryptographic
primitive, and an index decoder for each scattered cache way. Moreover, to
enable efficient lookups and writebacks, ScatterCache stores the index bits
from the physical address in addition to the tag bits, which adds < 5 % storage
overhead per cache line. Finally, ScatterCache consumes one bit per page-
table entry (≈ 1.5 % storage overhead per page-table entry) for the kernel to
communicate with the user space.

Outline. The remainder of this chapter is structured as follows: In Section 6.1,
we provide background information on caches and cache attacks. In Section 6.2,
we describe the design and concept of ScatterCache. In Section 6.3, we
analyze the security of ScatterCache against cache attacks. In Section 6.4,
we provide a performance evaluation. We conclude in Section 6.5.

6.1 Background
In this section, we provide background on caches, cache side-channel attacks, and
resilient cache architectures.

6.1.1 Caches
Modern computers have a memory hierarchy consisting of many layers, each
following the principle of locality, storing data that is expected to be used in the

6.1. Background 102

off
se

t

set[idx+2]

set[idx-2]

set[idx-1]

set[idx+1]

way 0 way 1 way 2 way 3

in
de

x
ta

g

Figure 6.1: Indexing cache sets in a 4-way set-associative cache.

future, e.g., based on what has been accessed in the past. Modern processors
have a hierarchy of caches that keep instructions and data likely to be used in the
future near the core to avoid the latency of accesses to the comparably slow main
memory—usually Dynamic Random-Access Memory (DRAM). This hierarchy
typically consists of 2 to 4 layers, where the lowest layer is the smallest and
fastest, typically only a few kilobytes. The last-level cache is the largest cache,
typically in the range of several megabytes. On most processors, the last-level
cache is shared among all cores. The last-level cache is often inclusive, i.e., any
cache line in a lower level cache must also be present in the last-level cache.

Caches are typically organized into cache sets that are composed of multiple
cache lines or cache ways. The cache set is determined by computing the cache
index from address bits. Figure 6.1 illustrates the indexing of a 4-way set-
associative cache. As the cache is small and the memory large, many memory
locations map to the same cache set (i.e., the addresses are congruent). The
replacement policy (e.g., pseudo-LRU, random) decides which way is replaced by
a newly requested cache line. Any process can observe whether data is cached
or not by observing the memory access latency which is the basis for cache
side-channel attacks.

6.1.2 Cache Side-Channel Attacks
Cache side-channel attacks have been studied for over the past two decades,
initially with a focus on cryptographic algorithms [Ber05; Koc96; OST06; Pag02;
Per05; Tsu+03]. Today, a set of powerful attack techniques enable attacks
in realistic cross-core scenarios. Based on the access latency, an attacker can
deduce whether or not a cache line is in the cache, leaking two opposite kinds
of information. (1) By continuously removing (i.e., evicting or flushing) a
cache line from the cache and measuring the access latency, an attacker can
determine whether this cache line has been accessed by another process. (2) By
continuously filling a part of the cache with attacker-accessible data, the attacker
can measure the contention of the corresponding part, by checking whether the
attacker-accessible data remained in the cache. Contention-based attacks work
on different layers:

6.1. Background 103

The Entire Cache or Cache Slices. An attacker can measure contention
of the entire cache or a cache slice. Maurice et al. [Mau+15a] proposed a
covert channel where the sender evicts the entire cache to leak information across
cores and the victim observes the cache contention. A similar attack could be
mounted on a cache slice if the cache slice function is known [Mau+15b]. The
granularity is extremely coarse, but with statistical attacks can leak meaningful
information [Sch+18d].

Cache Sets. An attacker can also measure the contention of a cache set.
For this, additional knowledge may be required, such as the mapping from
virtual addresses to physical addresses, as well as the functions mapping physical
addresses to cache slices and cache sets. The attacker continuously fills a cache
set with a set of congruent memory locations. Filling a cache set is also called
cache-set eviction, as it evicts any previously contained cache lines. Only if
some other process accessed a congruent memory location, memory locations
are evicted from a cache set. The attacker can measure this for instance by
measuring runtime variations in a so-called Evict+Time attack [OST06]. The
Evict+Time technique has mostly been applied in attacks on cryptographic
implementations [HWH13; Lip+16; OST06; SP13]. Instead of the runtime, the
attacker can also directly check how many of the memory locations are still
cached. This attack is called Prime+Probe [OST06]. Many Prime+Probe
attacks on private L1 caches have been demonstrated [ABG10; BH09; OST06;
Per05; Zha+12]. More recently, Prime+Probe attacks on last-level caches have
also been demonstrated in various generic use cases [AES15; Liu+15; Mau+17;
Ore+15; Ris+09; Zha+11].

Cache Lines. At a cache line granularity, the attacker can measure whether
a memory location is cached or not. As already indicated above, here the logic
is inverted. Now the attacker continuously evicts (or flushes) a cache line from
the cache. Later on, the attacker can measure the latency and deduce whether
another process has loaded the cache line into the cache. This technique is
called Flush+Reload [GBK11; YF14]. Flush+Reload has been studied
in a long list of different attacks [AES15; Ape+14; Ape+15; GSM15; IES16;
Inc+16; Lip+16; YF14; Zha+14; ZXZ16]. Variations of Flush+Reload are
Flush+Flush [Gru+16b] and Evict+Reload [GSM15; Lip+16].

Cache Covert Channels

Cache covert channels are one of the simplest forms of cache attacks. Instead of
an attacker process attacking a victim process, both processes collude to covertly
communicate using the cache as transmission channel. Thus, in this scenario, the
colluding processes are referred to as sender and receiver, as the communication
is mostly unidirectional. A cache covert channel allows bypassing all architectural
restrictions regarding data exchange between processes.

Various cache attacks, such as Prime+Probe [Liu+15; Mau+17; WXW15;
Xu+11] and Flush+Reload [Gru+16b], can be used to build cache covert
channels. They achieve transmission rates of up to 496 kB/s [Gru+16b]. Besides
native attacks, covert channels have also been shown to work within virtualized

6.1. Background 104

environments, across virtual machines [Liu+15; Mau+17; Xu+11]. Even in these
restricted environments, cache-based covert channels achieve transmission rates
of up to 45 kB/s [Mau+17].

6.1.3 Resilient Cache Architectures
The threat of cache-based attacks sparked several novel cache architectures
designed to be resilient against these attacks. While fixed cache partitions [Pag05]
lack flexibility, randomized cache allocation appears to be more promising. The
following briefly discusses previous designs for a randomized cache.

RPCache [WL07] and NewCache [WL08] completely disrupt the mean-
ingful observability of interference by performing random (re-)placement of lines
in the cache. However, managing the cache mappings efficiently either requires
full associativity or content addressable memory. While optimized addressing
logic can lead to efficient implementations, these designs differ significantly from
conventional architectures.

Time-Secure Caches [Tri+18] is based on standard set-associative caches
that are indexed with a keyed function that takes cache line address and Process
IDentifier (PID) as an input. While this design destroys the obvious cache
congruences between processes to minimize cache interference, a comparably
weak indexing function is used. Eventually, re-keying needs to be done quite
frequently, which amounts to flushing the cache and thus reduces practical
performance. ScatterCache can be seen as a generalization of this approach
with higher entropy in the indexing of cache lines.

CEASER [Qur18] as well uses standard set-associative caches with keyed
indexing, which, however, does not include the PID. Hence, inter-process cache
interference is predictable based on in-process cache collisions. As a result,
CEASER strongly relies on continuous re-keying of its index derivation to limit
the time available for conducting an attack. However, as found by the au-
thor [Qur19], rekeying alone is not sufficient to make CEASER secure while
maintaining its efficiency. Therefore, a new skewed variant of CEASER named
CEASER-S [Qur19] has been proposed. Interestingly, the independently and
concurrently developed CEASER-S design (with nways partitions) is basically
identical to our ScatterCache design. Still, unlike in our design which relies
on established primitives, CEASER(-S) uses a custom low latency-block cipher
for index derivation. Unfortunately, this cipher fails to deliver the expected
properties [Bod+20] and needs to be replaced.

HybCache [DFS19], another concurrently developed cache architecture,
distinguishes between isolated and non-isolated execution domains. For non-
isolated workloads, contemporary caching behavior is maintained. Isolated
workloads, on the other hand, are restricted to a fully-associative subcache—
comprising n isolated cache ways—with random replacement. This approach
apparently limits interference to the cache occupancy channel. However, requiring
the fully-associative lookup, especially in large Last-Level Caches (LLCs), may
still be too expensive in terms of area and/or power consumption.

6.2. ScatterCache 105

6.2 ScatterCache
As Section 6.1 showed, caches are a serious security concern in contemporary
computing systems. In this section, we hence present ScatterCache—a novel
cache architecture that counteracts cache-based side-channel attacks by skewed
pseudorandom cache indexing. After discussing the main idea behind Scatter-
Cache, we discuss its building blocks and system integration in more detail.
ScatterCache’s security implications are, subsequently, analyzed in Section 6.3.

6.2.1 Targeted Properties
Even though contemporary transparent cache architectures are certainly flawed
from the security point of view, they still feature desirable properties. In particu-
lar, for regular computations, basically no software support is required for cache
maintenance. Also, even in the case of multitasking and -processing, no dedicated
cache resource allocation and scheduling is needed. Finally, by selecting the
cache size and the number of associative ways, chip vendors can trade hardware
complexity and costs against performance as desired.

ScatterCache’s design strives to preserve these features while adding the
following three security properties:

• Between software defined security domains (e.g., different processes or users
on the same machine, different virtual machines, . . .), even for exactly the
same physical addresses, cache lines should only be shared if cross-context
coherency is required (i.e., writable shared memory).

• Finding and exploiting addresses that are congruent in the cache should be
as hard as possible (i.e., we want to “break” the direct link between the
accessed physical address and the resulting cache set index for adversaries).

• Controlling and measuring complete cache sets should be hard in order to
prevent eviction-based attacks.

Finally, to ease the adoption and to utilize the vast knowledge on building
efficient caches, the ScatterCache hardware should be as similar to current
cache architectures as possible.

6.2.2 Idea
Two main ideas influenced the design of ScatterCache to reach the desired
security properties. First, addresses should be translated to cache sets using a
keyed, security-domain aware mapping. Second, which exact nways cache lines
form a cache set in a nways-way associative cache should not be fixed, but depend
on the currently used key and security domain too. ScatterCache combines
both mappings in a single operation that associates each address, depending on
the key and security domain, with a set of up to nways cache lines. In other
words, in a generic ScatterCache, any possible combination of up to nways

cache lines can form a cache set.

6.2. ScatterCache 106

Set 0 Set 1 Set 2 Set 3

Addr. A

Addr. B

Addr. A

Addr. B

Figure 6.2: Flattened visualization of mapping addresses to cache sets in a 4-way
set-associative cache with 16 cache lines. Top: Standard cache where
index bits select the cache set. Middle: Pseudorandom mapping from
addresses to cache sets. The mapping from cache lines to sets is still static.
Bottom: Pseudorandom mapping from addresses to a set of cache lines
that dynamically form the cache set in ScatterCache.

Figure 6.2 visualizes the idea and shows how it differs from related work.
Traditional caches as well as alternative designs which pseudorandomly map
addresses to cache sets statically allocate cache lines to cache sets. Hence, as
soon as a cache set is selected based on (possibly encrypted) index bits, always
the same nways cache lines are used. This means that all addresses mapping to
the same cache set are congruent and enables Prime+Probe-style attacks.

In ScatterCache, on the other hand, the cache set for a particular access is
a pseudorandom selection of arbitrary nways cache lines from all available lines.
As a result, there is a much higher number of different cache sets and finding
addresses with identical cache sets becomes highly unlikely. Instead, as shown at
the bottom of Figure 6.2, at best, partially overlapping cache sets can be found
(cf. Section 6.3.3), which makes exploitation tremendously hard in practice.

A straightforward concept for ScatterCache is shown in Figure 6.3. Here,
the Index Derivation Function (IDF) combines the mapping operations in a single
cryptographic primitive. In a set-associative ScatterCache with set size nways,
for each input address, the IDF outputs nways indices to form the cache set for
the respective access. How exactly the mapping is performed in ScatterCache
is solely determined by the used key, the Security Domain IDentifier (SDID), and
the IDF. Note that, as will be discussed in Section 6.2.3, hash-based as well as
permutation-based IDFs can be used in this context.

Theoretically, a key alone is sufficient to implement the overall idea. However,
separating concerns via the SDID leads to a more robust and harder-to-misuse
concept. The key is managed entirely in hardware, is typically longer, and gets
switched less often than the SDID. On the other hand, the SDID is managed solely
by the software and, depending on the implemented policy, has to be updated
quite frequently. Importantly, as we show in Section 6.3, ScatterCache alone
already provides significantly improved security in Prime+Probe-style attack
settings even without software support (i.e., SDID is not used).

6.2. ScatterCache 107

IDF

cache line address

key

idx0-3

idx0 idx2 idx1 idx3

SDID offsettag index

Figure 6.3: Idea: For an nways associative cache, nways indices into the cache memory
are derived using a cryptographic IDF. This IDF effectively randomizes
the mapping from addresses to cache sets as well as the composition of
the cache set itself.

6.2.3 ScatterCache Design
In the actual design we propose for ScatterCache, the indices (i.e., IDF output)
do not address into one huge joint cache array. Instead, as shown in Figure 6.4,
each index addresses a separate memory, i.e., an independent cache way.

On the one hand, this change is counter-intuitive as it decreases the number
of possible cache sets from

(
nways·2bindices +nways−1

nways

)
to 2bindices·nways . However,

this reduction in possibilities is acceptable. For cache configurations with up to
4 cache ways, the gap between both approaches is only a few bits. For higher
associativity, the exponential growth ensures that sufficiently many cache sets
exist.

On the other hand, the advantages gained from switching to this design far
outweigh the costs. Namely, for the original idea, no restrictions on the generated
indices exist. Therefore, a massive nways-fold multi-port memory would be
required to be able to lookup a nways-way cache-set in parallel. The design
shown in Figure 6.4 does not suffer from this problem and permits to instantiate
ScatterCache using nways instances of simpler/smaller memory. Furthermore,
this design guarantees that even in case the single index outputs of the IDF
collide, the generated cache always consists of exactly nways many cache lines.
This effectively precludes the introduction of systematic biases for potentially
“weak” address-key-SDID combinations that map to fewer than nways cache lines.

In terms of cache-replacement policy, ScatterCache uses simple random
replacement to ensure that no systematic bias is introduced when writing to the
cache and to simplify the security analysis. Furthermore, and as we will show
in Section 6.4, the performance of ScatterCache with random replacement is
competitive to regular set associative caches with the same replacement policy.
Therefore, evaluation of alternative replacement policies has been postponed.
Independent of the replacement policy, it has to be noted that, for some IDFs,
additional tag bits have to be stored in ScatterCache. In particular, in case
of a non invertible IDF, the original index bits need to be stored to facilitate
write back of dirty cache lines and to ensure correct cache lookups. However,

6.2. ScatterCache 108

off
se

t

idx0

way 3
in

de
x

ta
g

ID
F

cache line
addr.

key

idx1

idx2

idx3

way 1 way 2way 0
SDID

Figure 6.4: 4-way set-associative ScatterCache where each index addresses exclu-
sively one cache way.

compared to the amount of data that is already stored for each cache line, the
overhead of adding these few bits should not be problematic (< 5 % overhead).

In summary, the overall hardware design of ScatterCache closely resembles
a traditional set-associative architecture. The only differences to contemporary
fixed-set designs is the more complex IDF and the amount of required logic
which permits to address each way individually. However, both changes are well
understood. As we detail in the following section, lightweight (i.e., low area
and latency) cryptographic primitives are suitable building blocks for the IDF.
Similarly, duplication of addressing logic is already common practice in current
processors. Modern Intel architectures, for example, already partition their LLC
into multiple smaller cache slices with individual addressing logic.

Suitable Index Derivation Functions

Choosing a suitable IDF is essential for both security and performance. In terms
of security, the IDF has to be an unpredictable (but still deterministic) mapping
from physical addresses to indices. Following Kerckhoffs’s principle, even for
attackers which know every detail except the key, three properties are expected
from the IDF: (1) Given perfect control over the public inputs of the function
(i.e., the physical address and SDID) constructing colliding outputs (i.e., the
indices) should be hard. (2) Given colliding outputs, determining the inputs or
constructing further collisions should be hard. (3) Recovering the key should be
infeasible given input and output for the function.

Existing Building Blocks: Cryptographic primitives like (tweakable) block
ciphers, Message Authentication Codes (MACs), and hash functions are designed
to provide these kind of security properties (e.g., indistinguishability of encryp-
tions, existential unforgeability, pre-image and collision resistance). Furthermore,
design and implementation of cryptographic primitives with tight performance
constraints is already a well-established field of research which we want to take
advantage of. For example, with Prince [Bor+12a], a low-latency block cipher,
and QARMA [Ava17], a family of low-latency tweakable block ciphers, exist and
can be used as building blocks for the IDF. Such tweakable block ciphers are a

6.2. ScatterCache 109

flexible extension to ordinary block ciphers, which, in addition to a secret key,
also use a public, application-specific tweak to en-/decrypt messages. Similarly,
sponge-based MAC, hash and cipher designs are a suitable basis for IDFs. These
sponge modes of operation are built entirely upon permutations, e.g., Keccak-p,
which can often be implemented with low latency [Arr+18; Ber+12a]. Using such
cryptographic primitives, we define the following two variants of building IDFs:

Hashing Variant (SCv1): The idea of SCv1 is to combine all IDF inputs
using a single cryptographic primitive with pseudo random output. MACs (e.g.,
hash-based) are examples for such functions and permit to determine the output
indices by simply selecting the appropriate number of disjunct bits from the
calculated tag. However, also other cryptographic primitives can be used for
instantiating this IDF variant.

It is, for example possible to slice the indices from the ciphertext of a regular
block cipher encryption which uses the concatenation of cache line address and
the SDID as the plaintext. Similarly, tweakable block ciphers allow to use the
SDID as a tweak instead of connecting it to the plaintext. Interestingly, finding
cryptographic primitives for SCv1 IDFs is comparably simple given that the block
sizes do not have to match perfectly and the output can be truncated as needed.

However, there are also disadvantages when selecting the indices pseudo
randomly, like in the case of SCv1. In particular, when many accesses with
high spatial locality are performed, index collisions get more likely. This is
due to the fact that collisions in SCv1 output have birthday-bound complexity.
Subsequently, performance can degrade when executing many different accesses
with high spatial locality. Fortunately, this effect weakens with increasing way
numbers, i.e., an increase in associativity decreases the probability that all index
outputs of the IDF collide.

In summary, SCv1 translates the address without distinguishing between
index and tag bits. Given a fixed key and SDID, the indices are simply pseudo
random numbers that are derived using a single cryptographic primitive.

Permutation Variant (SCv2): The idea behind the permutation variant
of the IDF is to distinguish the index from the tag bits in the cache line address
during calculation of the indices. Specifically, instead of generating pseudo
random indices from the cache line address, tag dependent permutations of the
input index are calculated.

The reason for preferring a permutation over pseudo random index generation
is to counteract the effect of birthday-bound index collisions, as present in SCv1.
Using a tag dependent permutation of the input index mitigates this problem
by design since permutations are bijections that, for a specific tag, cannot yield
colliding mappings.

Like in the hashing variant, a tweakable block cipher can be used to compute
the permutation. Here, the concatenation of the tag bits, the SDID and the way
index constitutes the tweak while the address’ index bits are used as the plaintext.
The resulting ciphertext corresponds to the output index for the respective way.
Note that the block size of the cipher has to be equal to the size of the index.
Additionally, in order to generate all indices in parallel, one instance of the

6.2. ScatterCache 110

tweakable block cipher is needed per cache way. However, as the block size is
comparably small, each cipher instance is also smaller than an implementation
of the hashing IDF (SCv1).

Independently of the selected IDF variant, we leave the decision on the
actually used primitive to the discretion of the hardware designers that implement
ScatterCache. They are the only ones who can make a profound decision given
that they know the exact instantiation parameters (e.g., SDID/key/index/tag bit
widths, number of cache ways) as well as the allocatable area, performance, and
power budget in their respective product. However, we are certain that, even with
the already existing and well-studied cryptographic primitives, ScatterCache
implementations are feasible for common computing platforms, ranging from
Internet-of-Things (IoT) devices to desktop computers and servers.

Note further that we expect that, due to the limited observability of the IDF
output, weakened (i.e., round reduced) variants of general-purpose primitives
are sufficient to achieve the desired security level. This is because adversaries
can only learn very little information about the function output by observing
cache collisions (i.e., no actual values). Subsequently, many more traces have to
be observed for mounting an attack. Cryptographers can take advantage of this
increase in data complexity to either design fully custom primitives [Qur18] or to
decrease the overhead of existing designs.

Key Management and Re-Keying

The key in our ScatterCache design plays a central role in the security of
the entire approach. Even when the SDIDs are known, it prevents attackers
from systematically constructing eviction sets for specific physical addresses and
thwarts the calculation of addresses from collision information. Keeping the key
confidential is therefore of highest importance.

We ensure this confidentiality in our design by mandating that the key of is
fully managed by hardware. There must not be any way to configure or retrieve
this key in software. This approach prevents various kinds of software-based
attacks and is only possible due to the separation of key and SDID.

The hardware for key management is comparably simple as well. Each time
the system is powered up, a new random key is generated and used by the IDF.
The simplicity of changing the key during operation strongly depends on the
configuration of the cache. For example, in a write-through cache, changing the
key is possible at any time without causing data inconsistency. In such a scenario,
a timer or performance-counter-based re-keying scheme is easily implementable.
Note, however, that the interval between key changes should not be too small as
each key change corresponds to a full cache flush.

On the other hand, in a cache with write-back policy, the key has to be kept
constant as long as dirty cache lines reside in the cache. Therefore, before the
key can be changed in this scenario without data loss, all modified cache lines
have to be written back to memory first. The x86 ISA, for example, features the
WBINVD instruction that can be used for that purpose.

If desired, also more complex rekeying schemes, like way-wise or cache-wide

6.2. ScatterCache 111

dynamic remapping [Qur18], can be implemented. However, it is unclear if
adding the additional hardware complexity is worthwhile. Even without changing
the key, mounting cache attacks against ScatterCache is much harder than
on traditional caches (see Section 6.3). Subsequently, performing an occasional
cache flush to update the key can be the better choice.

Integration into Existing Cache Architectures

ScatterCache is a generic approach for building processor caches that are
hard to exploit in cache-based side channel attacks. When hardening a system
against cache attacks, independent of ScatterCache, we recommend to restrict
flush instructions to privileged software. These instruction are only rarely used
in benign user space code and restricting them prevents the applicability of the
whole class of flush-based attacks from user space. Fortunately, recent ARM
architectures already support this restriction.

Next, ScatterCaches can be deployed into the system to protect against
eviction based attacks. While not inherently limited to, ScatterCaches are
most likely to be deployed as LLCs in modern processor architectures. Due
to their large size and the fact that they are typically shared across multiple
processor cores, LLCs are simply the most prominent cache attack target and
require the most protection. Compared to that, lower cache levels that typically
are only accessible by a single processor core, hold far less data and are much
harder to attack on current architectures. Still, usage of (unkeyed) skewed [Sez93]
lower level caches is an interesting option that has to be considered in this context.

Another promising aspect of employing a ScatterCache as LLC is that this
permits to hide large parts of the IDF latency. For example, using a fully unrolled
and pipelined IDF implementation, calculation of the required ScatterCache
indices can already be started, or even performed entirely, in parallel to the lower
level cache lookups. While unneeded results can easily be discarded, this ensures
that the required indices for the LLC lookup are available as soon as possible.

Low latency primitives like QARMA, which is also used in recent ARM
processors for pointer authentication, are promising building blocks in this regard.
The minimal latency Avanzi [Ava17] reported for one of the QARMA-64 variants
is only 2.2 ns. Considering that this number is even lower than the time it takes
to check the L1 and L2 caches on recent processors (e.g., 3 ns on a 4 GHz Intel
Kabylake [7cpb], 9 ns on an ARM Cortex-A57 in an AMD Opteron A1170 [7cpa]),
implementing IDFs without notable latency seems feasible.

6.2.4 Processor Interaction and Software
Even without dedicated software support, ScatterCache increases the com-
plexity of cache-based attacks. However, to make full use of ScatterCache,
software assistance and some processor extensions are required.

Security Domains. The ScatterCache hardware permits to isolate
different security domains from each other via the SDID input to the IDF.
Unfortunately, depending on the use case, the definition on what is a security

6.2. ScatterCache 112

domain can largely differ. For example, a security domain can be a chunk of the
address space (e.g., SGX enclaves), a whole process (e.g., TrustZone application),
a group of processes in a common container (e.g., Docker, LXC), or even a full
virtual machine (e.g., cloud scenario). Considering that it is next to impossible
to define a generic policy in hardware that can capture all these possibilities,
we delegate the distinction to software that knows about the desired isolation
properties, e.g., the Operating System (OS).

ScatterCache Interface. Depending on the targeted processor architecture,
different design spaces can be explored before deciding how the current SDID
gets defined and what channels are used to communicate the identifier to the
ScatterCache. However, at least for modern Intel and ARM processors,
binding the currently used SDID to the virtual memory management via user
defined bits in each Page Table Entry (PTE) is a promising approach. In more
detail, one or more bits can be embedded into each PTE that select from a
list, via one level of indirection, which SDID should be used when accessing the
respective page.

Both ARM and Intel processors already support a similar mechanism to
describe memory attributes of a memory mapping. The x86 architecture defines
so-called Page Attribute Tables (PATs) to define how a memory mapping can be
cached. Similarly, the ARM architecture defines Memory Attribute Indirection
Registers (MAIRs) for the same purpose. Both PAT and MAIR define a list of 8
memory attributes which are applied by the Memory-Management Unit (MMU).
The MMU interprets a combination of 3 bits defined in the PTE as index into
the appropriate list, and applies the corresponding memory attribute. Adding
the SDID to these attribute lists permits to use up to 8 different security domains
within a single process. The absolute number of security domains, on the other
hand, is only limited by the used IDF and them number of bits that represent
the SDID.

Such indirection has a huge advantage over encoding data directly in a
PTE. The OS can change a single entry within the list to affect all memory
mappings using the corresponding entry. Thus, such a mechanism is beneficial
for ScatterCache, where the OS wants to change the SDID for all mappings
of a specific process.

Backwards Compatibility. Ensuring backwards compatibility is a key
factor for gradual deployment of ScatterCache. By encoding the SDID via a
separate list indexed by PTE bits, all processes, as well as the OS, use the same
SDID, i.e., the SDID stored as first element of the list (assuming all corresponding
PTE bits are ‘0’ by default). Thus, if the OS is not aware of the ScatterCache,
all processes—including the OS—use the same SDID. From a software perspective,
functionally, ScatterCache behaves the same as currently deployed caches.
Only if the OS specifies SDIDs in the list, and sets the corresponding PTE bits
to use a certain index, ScatterCache provides its strong security properties.

Implementation Example. In terms of capabilities, having a single bit in
each PTE, for example, is already sufficient to implement security domains with
process granularity and to maintain a dedicated domain for the OS. In this case,

6.3. Security Evaluation 113

SDID0 can always be used for the OS ID while SDID1 has to be updated as
part of the context switch and is always used for the scheduled user space process.
Furthermore, by reusing the SDID of the OS, also shared memory between user
space processes can easily be implemented without security impact.

Interestingly, ScatterCache fully preserves the capability of the OS to
share read-only pages (i.e., libraries) also across security domains as no cache
lines will be shared. In contrast, real shared memory has to always be accessed
via the same SDID in all processes to ensure data consistency. In general, with
ScatterCache, as long as the respective cache lines have not been flushed
to RAM, data always needs to be accessed with the same SDID the data has
been written with to ensure correctness. This is also true for the OS, which has
to ensure that no dirty cache lines reside in the cache, e.g., when a page gets
assigned to a new security domain.

A case which has to be explicitly considered by the OS is copying data from
user space to kernel space and vice versa. The OS can access the user space via
the direct-physical map or via the page tables of the process. Thus, the OS has
to select the correct SDID for the PTE used when copying data. Similarly, if
the OS sets up page tables, it has to use the same SDID as the MMU uses for
resolving page tables.

6.3 Security Evaluation
ScatterCache is a novel cache design to efficiently thwart cache-based side-
channel attacks. In the following, we investigate the security of ScatterCache
using both theoretical analysis and empirically via simulation. In particular, this
section presents our initial complexity results for building the eviction sets from
the original publication [Wer+19b] with small updates based on the generalized
and improved strategy by Purnal and Verbauwhede [PV19]. Moreover, necessary
changes to the standard Prime+Probe technique—to make it viable on the
ScatterCache architecture—are discussed.

6.3.1 Applicability of Cache Attacks
While certain types of cache attacks, such as Flush+Flush, Flush+Reload
and Evict+Reload, require a particular cache line to be shared, attacks such
as Prime+Probe have less stringent constraints and only rely on the cache
being a shared resource. As sharing a cache line is the result of shared memory,
we analyze the applicability of cache attacks on ScatterCache with regard to
whether the underlying memory is shared between attacker and victim or not.

Shared, read-only memory. Read-only memory is frequently shared
among different processes, e.g., in case of shared code libraries. Scatter-
Cache prevents cache attacks involving shared read-only memory by introducing
security domains. In particular, ScatterCache maintains a separate copy of
shared read-only memory in cache for each security domain, i.e., the cache lines
belonging to the same shared memory region are not being shared in cache across

6.3. Security Evaluation 114

security domains anymore. As a result, reloading data into or flushing data
out of the cache does not provide any information on another security domain’s
accesses to the respective shared memory region. Note, however, that the cache
itself is shared, leaving attacks such as Prime+Probe still feasible.

Shared, writable memory. Exchanging data between processes requires
shared, writable memory. To ensure cache coherency, writing shared memory
regions must always use the same cache line and hence the same security domain
for that particular memory region—even for different processes. While attacks on
these shared memory regions involving flush instructions can easily be mitigated
by making these instructions privileged, Evict+Reload remains feasible. Still,
ScatterCache significantly hampers the construction of targeted eviction
sets by skewing, i.e., individually addressing, the cache ways. Moreover, its
susceptibility to Evict+Reload attacks is constrained to the processes sharing
the respective memory region. Nevertheless, ScatterCache requires writable
shared memory to be used only as an interface for data transfer rather than
sensitive computations. In addition, Prime+Probe attacks are still possible.

Unshared memory. Unshared memory regions never share the same
cache line, hence making attacks such as Flush+Flush, Flush+Reload and
Evict+Reload infeasible. However, as the cache component itself is shared,
cache attacks such as Prime+Probe remain possible.

As our analysis shows, ScatterCache prevents a wide range of cache
attacks that exploit the sharing of cache lines across security boundaries. While
Prime+Probe attacks cannot be entirely prevented as long as the cache itself
is shared, ScatterCache vastly increases their complexity in all aspects. The
pseudorandom cache-set composition in ScatterCache prevents attackers from
learning concrete cache sets from memory addresses and vice versa. Even if
attackers are able to profile information about the mapping of memory addresses
to cache-sets in their own security domain, it does not allow them infer the
mapping of cache-sets to memory addresses in other security domains. To gain
information about memory being accessed in another security domain, an attacker
needs to profile the mapping of the attacker’s address space to cache lines that
are being used by the victim when accessing the memory locations of interest.
The effectiveness of Prime+Probe attacks thus heavily relies on the complexity
of such a profiling phase. We elaborate on the complexity of building eviction
sets in Section 6.3.3.

6.3.2 Other Microarchitectural Attacks
Many other microarchitectural attacks are not fully mitigated but hindered
by ScatterCache. For instance, Meltdown [Lip+18b] and Spectre [Koc+19]
attacks cannot use the cache efficiently anymore but must resort to other covert
channels. Also, DRAM row buffer attacks and Rowhammer attacks are negatively
affected as they require to bypass the cache and reach DRAM. While these
attacks are already becoming more difficult due to closed row policies in modern
processors [Gru+18], we propose to make flush instructions privileged, removing
the most widely used cache bypass. Cache eviction gets much more difficult

6.3. Security Evaluation 115

with ScatterCache and additionally, spurious cache misses will open DRAM
rows during eviction. These spurious DRAM row accesses make the row hit
side channel impractical and introduce a significant amount of noise on the row
conflict side channel. Hence, while these attacks are not directly in the scope of
this paper, ScatterCache arguably has a negative effect on them.

6.3.3 Complexity of Building Eviction Sets
Cache skewing significantly increases the number of different cache sets available
in cache. However, many of these sets will overlap partially, i.e., in 1 ≤ i <
nways ways. The complexity of building eviction sets for Evict+Reload and
Prime+Probe in ScatterCache thus depends on the overlap of cache sets.

Full Cache-Set Collisions

There are 2bindices·nways different possibilities to form one specific cache set in
a ScatterCache. For a given target address, this results in a probability of
2−bindices·nways of finding another address that maps exactly to the same cache
lines in its assigned cache set. Even state-of-the-art systems commonly do not
have sufficient number of physical addresses available to find such a full cache-set
collision. A 4-way cache with bindices = 12 index bits, for example, yields already
248 different cache sets. Mounting an attack based on full cache-set collision can,
hence, be considered impractical in real-world scenarios.

Partial Cache-Set Collisions

While full cache-set collisions are impractical, partial collisions of cache sets
frequently occur in skewed caches such as ScatterCache. If the cache sets of
two addresses overlap, two cache sets will most likely have a single cache line in
common. For this reason, we analyze the complexity of eviction for single-way
collisions in more detail.

Randomized Single-Set Eviction. Without knowledge of the concrete
mapping from memory addresses to cache sets, the trivial approach of eviction is to
access arbitrary memory locations, which will result in accesses to pseudorandom
cache sets in ScatterCache. To elaborate on the performance of this approach,
we consider a cache with nlines = 2bindices cache lines per way and investigate the
eviction probability for a single cache way, which contains a specific cache line
to be evicted. Given that ScatterCache uses a random (re-)placement policy,
the probabilities of each cache way are independent, meaning that each way has
the same probability of being chosen. Subsequently, the attack complexity on
the full ScatterCache increases linearly with the number of cache ways, i.e.,
the attack gets harder.

The probability of an arbitrary memory accesses to a certain cache way hitting
a specific cache line is p = n−1

lines. Performing naccesses independent accesses to
this cache way increases the odds of eviction to a certain confidence level α.

α = 1− (1− n−1
lines)naccesses

6.3. Security Evaluation 116

Equivalently, to reach a certain confidence α in evicting the specific cache line,
attackers have to perform

E(naccesses) = log(1− α)
log(1− n−1

lines)

independent accesses to this cache way, which amounts to their attack complexity.
Hence, to evict a certain cache set from an 8-way ScatterCache with 211 lines
per way with α = 99 % confidence, the estimated attack complexity using this
approach is naccesses · nways ≈ 216 independent accesses.

Randomized Multi-Set Eviction. Interestingly, eviction of multiple cache
sets using arbitrary memory accesses has similar complexity. In this regard, the
coupon collector’s problem gives us a tool to estimate the number of accesses an
attacker has to perform to a specific cache way to evict a certain percentage of
cache lines in the respective way. In more detail, the coupon collector’s problem
provides the expected number of accesses naccesses required to a specific cache
way such that nhit out of all nlines cache lines in the respective way are hit.

E(naccesses) = nlines · (Hnlines
−Hnlines−hhit

)

Hereby, Hn denotes the n-th Harmonic number, which can be approximated using
the natural logarithm. This approximation allows to determine the number of
cache lines nhit that are expected to be hit in a certain cache way when naccesses

random accesses to the specific way are performed.

E(nhit) = nlines · (1− e−
naccesses

nlines) (6.1)

Using nhit, we can estimate the number of independent accesses to be performed
to a specific cache way such that a portion β of the respective cache way is
evicted.

E(naccesses) = −nlines · ln(1− β)

For the same 8-way ScatterCache with 211 lines per way as before, we therefore
require roughly 216 independent accesses to evict β = 99 % of the cache.

Profiled Eviction for Prime+Probe. As shown, relying on random
eviction to perform cache-based attacks involves significant effort and yields
an over-approximation of the eviction set. Moreover, while random eviction is
suitable for attacks such as Evict+Reload, in Prime+Probe settings random
eviction fails to provide information related to the concrete memory location
that is being used by a victim. To overcome these issues, attackers may profile a
system to construct eviction sets for specific memory addresses of the victim, i.e.,
they try to find a set of addresses that map to cache sets that partially overlap
with the cache set corresponding to the victim address. Eventually, such sets
could be used to speed up eviction and to detect accesses to specific memory
locations. In the following, we analyze the complexity of finding these eviction
sets and present our original approach. In more detail, we perform analysis w.r.t.

6.3. Security Evaluation 117

0 50 100 150 200 250 300 350 400

0.25

0.5

0.75

1

Eviction Set Size

Pr
ob

ab
ili
ty

4 ways 8 ways 16 ways 20 ways

Figure 6.5: Eviction probability depending on the size of the eviction set and the
number of ways.

eviction addresses whose cache sets overlap with the cache set of a victim address
in a single cache way only.

To construct a suitable eviction set for Prime+Probe, the attacker needs
to provoke the victim process to perform the access of interest. In particular,
the attacker tests a candidate address for cache-set collisions by accessing it
(prime), waiting for the victim to access the memory location of interest, and
then measuring the time when accessing the candidate address again (probe).
In such a profiling procedure, after the first attempt, we have to assume that
the cache line belonging to the victim access already resides in the cache. As a
result, attackers need to evict a victim’s cache line in their prime step. Hereby,
hitting the right cache way and index have probability nways

−1 and 2−bindices ,
respectively. To be able to detect a collision during the probe step, the victim
access must then fall into the same cache way as the candidate address, which
has a chance of nways

−1. In total, the expected number of memory accesses
required to construct an eviction set of t colliding addresses hence is

E(naccesses) = nways
2 · 2bindices · t.

The number of memory addresses t needs to be chosen according to the desired
eviction probability for the victim address with the given set. When the eviction
set consists of addresses that collide in the cache with the victim in exactly one
way each, the probability of evicting the victim with an eviction set of size t is

p(Eviction) = 1−
(

1− 1
nways

) t
nways

.

Figure 6.5 depicts this probability for the size of the eviction set and different
numbers of cache ways. For an 8-way ScatterCache with 211 cache lines per
way, roughly 275 addresses with single-way cache collisions are needed to evict the
respective cache set with 99 % probability. Constructing this eviction set using the

6.3. Security Evaluation 118

0.25 0.5 0.75 1 1.5 2
106

107

108

109

Cache Size [MB]

V
ic
tim

A
cc
es
se
s

4 ways 8 ways 16 ways 20 ways

Figure 6.6: Number of required accesses to the target address to construct a set large
enough to achieve 99 % eviction rate when no shared memory is available
(cache line size: 32 bytes).

presented approach requires profiling of approximately 82 ·211 ·275 ≈ 225 (33.5 mil-
lion) victim accesses. Figure 6.6 shows the respective number of Prime+Probe
experiments needed to generate sets with 99 % eviction probability for different
cache configurations. We were able to empirically confirm these numbers within a
noise-free standalone simulation of ScatterCache. For comparison, to generate
an eviction set on a commodity cache, e.g., recent Intel processors, for a specific
victim memory access, an attacker needs fewer than 103 observations of that
access in a completely noise-free attacker-controlled scenario.

After publication, Purnal and Verbauwhede [PV19] generalized and consider-
ably improved our approach for finding eviction sets. When searching for colliding
addresses, their improved profiling strategy probes k′ different addresses in par-
allel which considerably reduces the number of required victim accesses. This
parallel search is possible due to the addition of a pruning step that guarantees
that all k′ addresses reside within the cache before the victim access is triggered.
The improved approach, therefore, reduces the number of victim accesses by
trading them against additional attacker accesses in the pruning step. In the
best attack parameterization, for the previously discussed cache configuration, as
little as 825 controlled victim accesses are required for building the eviction set.

Profiled Eviction for Evict+Reload. For shared memory, such as in
Evict+Reload, the construction of eviction sets, however, becomes easier, as
shared memory allows the attacker to simply access the victim address. Hence,
to build a suitable eviction set, the attacker first primes the victim address, then
accesses a candidate address, and finally probes the victim address. In case a
specific candidate address collides with the victim address in the cache way the
victim access falls into, the attacker can observe this collision with probability
p = nways

−1. As a result, the expected number of memory accesses required to

6.3. Security Evaluation 119

build an eviction set of t colliding addresses for Evict+Reload is

E(naccesses) = nways · 2bindices · t.

Constructing an Evict+Reload eviction set of 275 addresses (i.e., 99 % evic-
tion probability) requires profiling with roughly 8 · 211 · 275 = 222 memory
addresses for an 8-way ScatterCache with 211 lines per way. Note, however,
that Evict+Reload only applies to writable shared memory as used for Inter-
Process Communication (IPC), whereas ScatterCache effectively prevents
Evict+Reload on shared read-only memory by using different cache-set compo-
sitions in each security domain. Moreover, eviction sets for both Prime+Probe
and Evict+Reload must be freshly created whenever the key or the SDID
changes.

6.3.4 Complexity of Prime+Probe
As demonstrated, ScatterCache strongly increases the complexity of building
the necessary sets of addresses for Prime+Probe. However, the actual attacks
utilizing these sets are also made more complex by ScatterCache.

In this section, we make the strong assumption that an attacker has suc-
cessfully profiled the victim process such that they have found addresses which
collide with the victim’s target addresses in exactly 1 way each, have no collisions
with each other outside of these and are sorted into subsets corresponding to the
cache line they collide in.

Where in normal Prime+Probe an attacker can infer victim accesses (or
a lack thereof) with near certainty after only 1 sequence of priming and prob-
ing, ScatterCache degrades this into a probabilistic process. At best, one
Prime+Probe operation on a target address can detect an access with a prob-
ability of nways

−1. This is complicated further by the fact that any one set
of addresses is essentially single-use, as the addresses will be cached in a non-
colliding cache line with a probability of 1− nways

−1 after only 1 access, where
they cannot be used to detect victim accesses anymore until they themselves are
evicted again.

Given the profiled address sets, we can construct general probabilistic variants
of the Prime+Probe attack. While other methods are possible, we believe the
2 described in the following represent lower bounds for either victim accesses or
memory requirement.

Variant 1: Single collision with eviction. We partition our set of ad-
dresses, such that one Prime+Probe set consists of nways addresses, where each
collides with a different way of the target address. To detect an access to the target,
we prime with one set, cause a target access, measure the primed set and then evict
the target address. We repeat this process until the desired detection probability
is reached. This probability is given by p(naccesses) = 1− (1− nways

−1)naccesses .
The eviction of the target address can be achieved by either evicting the entire
cache or using preconstructed eviction sets (see Section 6.3.3). After the use
of an eviction set, a different priming set is necessary, as the eviction sets only

6.3. Security Evaluation 120

target the victim address. After a full cache flush, all sets can be reused. The
amount of colliding addresses we need to find during profiling depends on how
often a full cache flush is performed. This method requires the least amount of
accesses to the target, at the cost of either execution time (full cache flushes) or
memory and profiling time (constructing many eviction sets).

Variant 2: Single collision without eviction. Using the same method but
without the eviction step, the detection probability can be recursively calculated
as

p(nacc.) = p(nacc. − 1) + (1− p(nacc. − 1))(2 · nways − 1
nways

3)

with p(1) = nways
−1. This variant provides decreasing benefits for additional

accesses. The reason for this is that the probability that the last step evicted the
target address influences the probability to detect an access in the current step.
While this approach requires many more target accesses, it has the advantage of
a shorter profiling phase.

These two methods require different amounts of memory, profiling time and
accesses to the target, but they can also be combined to tailor the attack to
the target. Which is most useful depends on the attack scenario, but it is clear
that both come with considerable drawbacks when compared to Prime+Probe
in current caches. For example, achieving a 99 % detection probability in a
2 MB Cache with 8 ways requires 35 target accesses and 9870 profiled addresses
in 308 MB of memory for variant 1 if we use an eviction set for every probe
step. Variant 2 would require 152 target accesses and 1216 addresses in 38 MB
of memory. In contrast, regular Prime+Probe requires 1 target access and
8 addresses while providing 100 % accuracy (in this ideal scenario). Detecting
non-repeating events is made essentially impossible; to measure any access with
confidence requires either the knowledge that the victim process repeats the same
access pattern for long periods of time or control of the victim in a way that allows
for repeated measurements. In addition to the large memory requirements, variant
1 also heavily degrades the temporal resolution of a classical Prime+Probe
attack because of the necessary eviction steps. This makes trace-based attacks
like attacks on square-and-multiply in RSA [YF14] much less practical. Variant
2 does not suffer from this drawback, but requires one Prime+Probe set for
each time step, for as many high-resolution samples as one trace needs to contain.
This can quickly lead to an explosion in required memory when thousands of
samples are needed.

6.3.5 Challenges with Real-World Attacks
We failed at mounting a real-world attack (i.e., with even the slightest amounts
of noise) on ScatterCache. Generally, for a Prime+Probe attack we need
to (1) generate an eviction set (cf. Section 6.3.3), and (2) use the eviction set
to monitor a victim memory access. If we assume step 1 to be solved, we can
mount a cache attack (i.e., step 2) with a complexity increases by a factor of
152 (cf. Section 6.3.4). For some real-world attacks this would not be a problem,

6.3. Security Evaluation 121

in particular if a small fast algorithm is attacked, e.g., AES with T-tables.
Gülmezoglu et al. [Gül+15] recovered the full AES key from an AES T-tables
implementation with only 30 000 encryptions in a fully synchronized setting (that
can be implemented with Prime+Probe as well [Gru+16b]), taking 15 seconds,
i.e., 500 µs per encryption. The same attack on ScatterCache takes 4.56 · 106

encryptions, i.e., 38 minutes assuming the same execution times, which is clearly
viable.

However, the real challenge is solving step 1, which we did not manage for
any real-world example when writing the paper. In particular, even if AES
would only perform a single attacker-chosen memory access (instead of 160 to
the T-tables alone, plus additional code and data accesses), which would be
ideal for the attacker in the profiling during step 1, using our initial profiling
approach we need to observe 33.5 million encryptions. In addition to the runtime
reported by Gülmezoglu et al. [Gül+15] we also need a full cache flush after each
attack round (i.e., each encryption). For a 2 MB cache, we need to iterate over a
6 MB array to have a high probability of covering all cache lines. The time for
an L3-cache access is e.g., for Kaby Lake 9.5 ns [7cpb]. The absolute minimum
number of cache misses here is 65536 (=4 MB), but in practice it will be much
higher. A cache miss takes around 50 ns, hence, the full cache eviction will take
at least 3.6 ms. Consequently, using the original profiling approach, with 33.5
million tests required to generate the eviction set and a runtime of 4.1 ms per
test, the total runtime to generate the eviction set is 38 hours.

Using the improved profiling approach by Purnal and Verbauwhede [PV19],
on the other hand, time for the generation of the eviction set becomes more than
feasible and drops to less than 5 seconds. Still, these numbers only considers
the theoretical setting of a completely noise-free and idle system. The process
doing AES computations must not be restarted during the profiling and the
attack phase. The operating system must not replace any physical pages and,
most importantly, our hypothetical AES implementation only performs a single
memory access. With a second memory access, these two memory accesses can
already not be distinguished anymore with the generated eviction set, because
the eviction set is generated for an invocation of the entire victim computation,
not for an address. In any realistic setting with only the slightest amount of
activity (noise) on the system, the required time for mounting an attack easily
explodes.

6.3.6 Noise Sampling
The previous analysis considered a completely noise-free scenario, where the
attacker performs Prime+Probe on a single memory access executed by the
victim. However, in a real system, an attacker will typically not be able to
perform an attack on single memory accesses, but face different kinds of noise.
Namely, on real systems cache attacks will suffer from both systematic and
random noise, which reduces the effectiveness of profiling and the actual attack.

Systematic noise is introduced, for example, by the victim as it executes
longer code sequences in between the attacker’s prime and probe steps. The

6.3. Security Evaluation 122

victim’s code execution intrinsically performs additional memory accesses to fetch
code and data that the attacker will observe in the cache deterministically. In
ScatterCache, the mappings of memory addresses to cache lines is unknown.
Hence, without additional knowledge, the attacker is unable to distinguish
the cache collision belonging to the target memory access from collisions due
to systematic noise. Instead, the attacker can only observe and learn both
simultaneously. As a result, larger eviction sets need to be constructed to yield
the same confidence level for eviction. Specifically, the size of an eviction set must
increase proportionally to the number of systematic noise accesses to achieve the
same properties. While this significantly increases an attackers profiling effort,
they may be able to use clustering techniques to prune the eviction set prior to
performing an actual attack.

Random noise, on the other hand, stems from arbitrary processes accessing
the cache simultaneously or as they are scheduled in between. Random noise
hence causes random cache collisions to be detected by an attacker during both
profiling and an actual attack, i.e., produces false positives. While attackers
cannot distinguish between such random noise and systematic accesses in a
single observation, these random noise accesses can be filtered out statistically
be repeating the same experiment multiple times. Yet, it increases an attackers
effort significantly. For instance, when building eviction sets an attacker can try
to observe the same cache collision multiple times for a specific candidate address
to be certain about its cache collision with the victim.

Random noise distributes in ScatterCache according to Equation 6.1 and
hence quickly occupies large parts of the cache. As a result, there is a high
chance of sampling random noise when checking a candidate address during the
construction of eviction sets. Also when probing addresses of an eviction set in an
actual attack, random noise is likely to be sampled as attacks on ScatterCache
demand for large eviction sets. As our analysis shows, for a single cache way
the distribution of cache line indices corresponding to the memory accesses of
profiled eviction sets (cf. Section 6.3.3) adheres to Figure 6.7. Clearly, due
to profiling there is a high chance of roughly 1/nways to access the index that
collides with the victim address. However, with p = (nways − 1)/nways the index
adheres to an uniformly random selection from all possible indices and hence
provides a large surface for sampling random noise. Consequently, for a cache
with nlines = 2bindices lines per way and nnoise lines being occupied by noise in
each way, the probability of sampling random noise when probing an eviction set
address is

p(Noise) ≈ nways − 1
nways

nnoise

nlines
.

Figure 6.8 visualizes this effect and in particular the percentage of noisy samples
encountered in an eviction set for different cache configurations and noise levels.
While higher random noise clearly increases an attackers effort, the actual noise
level strongly depends on the system configuration and load.

6.3. Security Evaluation 123

0 20 40 60 80 100 120

0.01

0.1

Cache Line Index

Pr
ob

ab
ili
ty

Way 0 Way 1 Way 2 Way 3

Figure 6.7: Example distribution of cache indices of addresses in profiled eviction sets
(nways = 4, bindices = 7).

0 1,000 2,000 3,000 4,000 5,000 6,000 7,000 8,000 9,000 10,0000
20
40
60
80

100

Noise Accesses

N
oi
sy

Sa
m
pl
es

[%
]

4 Ways 8 Ways 16 Ways

Figure 6.8: Expected percentage of noisy samples in an eviction set for a cache
consisting of 212 cache lines.

6.3.7 Further Remarks
In the previous analysis, the SDIDs of both attacker and victim were assumed to
be constant throughout all experiments for statistical analysis to be applicable.
Additionally, systematic and random noise introduced during both profiling and
attack further increase the complexity of actual attacks, rendering attacks on
most real-world systems impractical.

Also note that the security analysis in this section focuses on SCv1. In a
noise-free scenario, SCv2 may allow to construct eviction sets slightly more
efficiently since its IDF is a permutation. This means that, once a collision in a
certain cache way is found, there will not be any other colliding address for that
cache way in the same index range, i.e., for the same address tag. Considering the
expected time to find the single collision in a given index range, this could give an
attacker a benefit of up to a factor of two in constructing eviction sets. However,
in practice multiple cache ways are profiled simultaneously, which results in a
high chance of finding a collision in any of the cache ways independent of the
address index bits, i.e., the nways indices for a certain memory address will very

6.4. Performance Evaluation 124

likely be scattered over the whole index range. Independent of that, the presence
of noise significantly hampers taking advantage of the permuting property of
SCv2.

6.4 Performance Evaluation
ScatterCache significantly increases the effort of attackers to perform cache-
based attacks. However, a countermeasure must not degrade performance to be
practical as well. This section hence analyzes the performance of ScatterCache
using the gem5 full system simulator and GAP [BAP15], MiBench [Gut+01],
lmbench [MS96], and the C version of scimark2 1 as micro benchmarks. Addi-
tionally, to closer investigate the impact of ScatterCache on larger workloads,
a custom cache simulator is used for SPEC CPU 2017 benchmarks. Our evalua-
tions indicate that, in terms of performance, ScatterCache behaves basically
identical to traditional set-associative caches with the same random replacement
policy.

6.4.1 gem5 Setup
We performed our cache evaluation using the gem5 full system simulator [Bin+11]
in 32-bit ARM mode. In particular, we used the CPU model TimingSimpleCPU
together with a cache architecture such as commonly used in ARM Cortex-A9
CPUs: the cache line size was chosen to be 32bytes, the 4-way L1 data and
instruction caches are each sized 32 kB, and the 8-way L2 cache is 512 kB large.
We adapted the gem5 simulator such as to support ScatterCache for the L2
cache. This allows to evaluate the impact of six different cache organizations.
Besides ScatterCache in both variants (1) SCv1 and (2) SCv2 and standard
set-associative caches with (3) LRU, (4) BIP, and (5) random replacement, we
also evaluated (6) skewed associative caches [Sez93] with random replacement as
we expect them to have similar performance characteristics as SCv1 and SCv2.

On the software side, we used the Poky Linux distribution from Yocto
2.5 (Sumo) with kernel version 4.14.67 after applying patches to run within
gem5. We then evaluated the performance of our micro benchmarks running
on top of Linux. In particular, we analyzed the cache statistics provided by
gem5 after booting Linux and running the respective benchmark. Using this
approach, we reliably measure the cache performance and execution time for each
single application, i.e., without concurrent processes. Since only the L2-cache
architecture (i.e., replacement policy, skewed vs. fixed sets) changed between the
individual simulation runs, execution performance is simply direct proportional to
the resulting cache hit rate. To enable easier comparison between the individual
benchmarks as well as with related work we therefore mainly report L2-cache hit
results.

ScatterCache IDF Instantiations. Both ScatterCache variants have
been instantiated using the low-latency tweakable block cipher QARMA-64 [Ava17].

1https://math.nist.gov/scimark2/

https://math.nist.gov/scimark2/

6.4. Performance Evaluation 125

In particular, in the SCv1 variant, the index bits for the individual cache ways
have been sliced from the ciphertext of encrypting the cache line address under
the secret key and SDID. On the other hand, due to the lack of an off-the-shelf
tweakable block cipher with the correct block size, a stream cipher construction
was used in the SCv2 variant. Namely, the index is computed as the XOR
between the original index bits and the ciphertext of the original tag encrypted
using QARMA-64. Note, however, that, although this construction for SCv2
is a proper permutation and entirely sufficient for evaluating the performance
of SCv2, we do not recommend the construction as pads are being reused for
addresses having the same tag bits.

While the majority of the following results are latency agnostic LLC hit rates,
all following results are reported for the zero cycle latency case. For QARMA-64
with 5 rounds, Application Specific Integrated Circuit (ASIC) implementation
results with as little as 2.2 ns latency have been reported [Ava17]. We are therefore
confident that, if desired, hiding the latency of the IDF by computing it in parallel
to the lower level cache lookup is feasible.

However, we still also conducted simulations with latency overheads between
1 and 5 cycles by increasing the tag_latency of the cache in gem5. The acquired
results show that, even for IDFs which introduce 5 cycles of latency, less than
2 % performance penalty are encountered on the GAP benchmark suite. These
numbers are also in line with Qureshi’s results reported for CEASER [Qur18].

6.4.2 Hardware Overhead Discussion
ScatterCache is designed to be as similar to modern cache architectures
as possible in terms of hardware. Still, area and power overheads have to be
expected due to the introduction of the IDF and the additional addressing logic.
Unfortunately, while probably easy for large processor and System-on-Chip (SoC)
vendors, determining reliable overhead numbers for these two metrics is a difficult
task for academia that requires an actual ASIC implementation of the cache.
To the best of our knowledge, even in the quite active RISC-V community,
no open and properly working LLC designs are available that can be used as
foundation. Furthermore, for merely simulating such a design with a reasonably
large cache, commercial Electronic Design Automation (EDA) tools, access to
state-of-the-art technology libraries, and large memory macros with power models
are required. As the result, secure cache designs typically fail to deliver hardware
implementation results (see Table 6 in [DXS19]).

Because of these problems, similar to related work, we can also not provide
concrete numbers for the area and power overhead. However, due to the way we
designed ScatterCache and the use of lightweight cryptographic primitives,
we can assert that the hardware overhead is reasonable. For example, the
8-way SCv1 ScatterCache with 512 kB that is simulated in the following
section, uses two parallel instances of QARMA-64 with 5 rounds as IDF. One
fully unrolled instance has a size of 22.6 kGE [Ava17]2 resulting in an IDF size

21 GE conforms to the area of a 2-input NAND gate with driving strength 1.

6.4. Performance Evaluation 126

bc
kr
on

bc
ur
an
d

bf
s k
ro
n

bf
s u
ra
nd

cc
kr
on

cc
ur
an
d

pr
kr
on

pr
ur
an
d

sss
p
kr
on

sss
p
ur
an
d

tc
kr
on

tc
ur
an
d

m
ea

n

0

5

H
it
R
at
e

∆
[%

]
(h
ig
he
r
is

be
tt
er
)

BIP LRU SCv1 SCv2 Skewed

Figure 6.9: Cache hit rate, simulated with gem5, for the synthetic workloads in the
GAP benchmark suite with random replacement policy as baseline.

of less then 50 kGE even in case additional pipeline registers are added. The
added latency of such an IDF is the same as the latency of the used primitive
which has been reported as 2.2 ns. However, this latency can (partially or fully)
be hidden by computing the IDF in parallel to the lower level cache lookup.
Interestingly, with similar size, also a sponge-based SCv1 IDF (e.g., 12 rounds of
Keccak[200] [Ber+12a]) can be instantiated. Finally, there is always the option
to develop custom IDF primitives [Qur18] that demand even less resources.

For comparison, in the BROOM chip [Cel+19], the RAM macros in the 1 MB
L2 cache already consume roughly 50 % of the 4.86 mm2 chip area. Assuming
an utilization of 75 % and a raw gate density of merely 3 MGE/mm2 [Eur19] for
the used 28 nm TSMC process, these 2.43 mm2 already correspond to 5.5 MGE.
Subsequently, even strong IDFs are orders of magnitude smaller than the size of
a modern LLC.

In terms of overhead for the individual addressing of the cache ways, informa-
tion is more sparse. Spjuth et al. [SKH05] observed a 17 % energy consumption
overhead for a 2-way skewed cache. They also report that skewed caches can be
built with lower associativity and still reach similar performance as traditional
fixed set-associative caches. Furthermore, modern Intel architectures already
feature multiple addressing circuits in their LLC as they partition it into multiple
smaller caches (i.e., cache slices).

6.4.3 gem5 Results and Discussion
Figure 6.9 visualizes the cache hit rate of our L2 cache when executing programs
from the GAP benchmark suite. To ease visualization, the results are plotted in
percentage points (pp), i.e., the differences between percentage numbers, using
the fixed set-associative cache with random replacement policy as baseline. All
six algorithms (i.e., bc, bfs, cc, pr, sssp, tc) have been evaluated. Moreover,
as trace sets, both synthetically generated kron (-g16 -k16) and urand (-u16

6.4. Performance Evaluation 127

Total iTB
walker

dTB
walker

Inst Data
0

50

100
19

.8
7

91
.6 98

.9

68
.0

9

2.
81

19
.8

2

92
.2 98

.8
2

73
.1

4

2.
75

20
.3

5

89
.6

2

98
.6

4

72
.0

9

3.
43

30
.1

4

88
.8

8

97
.7

7

68
.9

2

15
.5

630
.1

3

87
.2

2

97
.7

7

68
.8

4

15
.5

530
.2

88
.8

4

97
.9

8

69
.1

15
.5

9

H
it
R
at
e
[%

]
(h
ig
he
r
is

be
tt
er
)

BIP LRU Rand SCv1 SCv2 Skewed

Figure 6.10: Cache hit rate, simulated with gem5, for scimark2.

composite fft sor monte
carlo

sparse
matmult

lu
0

50

100

150

58
.4

6

15

13
5.

29

45
.8

6

36
.0

6 60
.1

58
.4

5

15
.1

4

13
5.

34

45
.8

6

36
.0

8 59
.8

3

56
.9

2

14
.8

2

13
0.

46

45
.8

6

36
.0

4 57
.4

59
.7

5

20
.9

2

13
5.

75

45
.8

6

36
.0

2 60
.1

8

59
.8

20
.9

4

13
5.

9

45
.8

6

36
.0

2 60
.2

8

59
.7

20
.8

7

13
5.

51

45
.8

6

36
.0

4 60
.2Sc
or
e

(h
ig
he
r
is

be
tt
er
)

BIP LRU Rand SCv1 SCv2 Skewed

Figure 6.11: Scimark2 score simulated with gem5.

-k16) sets have been used. As can be seen in the graph, the BIP and LRU
replacement policies outperform random replacement on average by 4.6 pp and
4 pp respectively. Interestingly, however, all random replacement based schemes,
including the skewed variants, perform basically identical.

The next benchmark, we visualized in Figure 6.10, is scimark2 (-large
0.5). This benchmark shows an interesting advantage of the skewed cache
architectures over the fixed-set architectures, independent of the replacement
policy, of approximately 10pp for the total hit rate. This difference is mainly
caused by the 5x difference in hit rate for data accesses. Comparing the achieved
benchmark scores in Figure 6.11 further reveals that the fft test within scimark2
is the reason for the observed discrepancy in cache performance.

To investigate this effect in more detail, we measured the memory read latency
using using lat_mem_rd 8M 32 from lmbench in all cache configurations. The
respective results in Figure 6.12 feature two general steps in the read latency
at 32 kB (L1-cache size) and at 512 kB (L2-cache size). Notably, configurations
with random replacement policy feature a smoother transition at the second step,

6.4. Performance Evaluation 128

0.001 0.01 0.1 1 10
0

50

100

Access Size [MB]

R
ea
d
La

te
nc

y
[n

s]
(l
ow

er
is

be
tt
er
)

BIP
LRU
Rand
SCv1
SCv2
Skewed

Figure 6.12: Memory read latency, simulated with gem5, with 32 byte stride (i.e.,
one access per cache line).

0.001 0.01 0.1 1 10
0

50

100

Access Size [MB]

R
ea
d
La

te
nc

y
[n

s]
(l
ow

er
is

be
tt
er
)

BIP
LRU
Rand
SCv1
SCv2
Skewed

Figure 6.13: Memory read latency, simulated with gem5, with 128 byte stride (i.e.,
one access in every fourth cache line).

i.e., when accesses start to hit main memory instead of the L2 cache.
Even more intersting results, as shown in Figure 6.13, have been acquired by

increasing the stride size to four times the cache line size. Skewed caches like
ScatterCache break the strong alignment of addresses and cache set indices.
As a consequence, a sparse, but strongly aligned memory access pattern such as
in lat_mem_rd, which in a standard set-associative caches only uses every 4th
cache index, gives high cache hit rates and low read latencies for larger memory
ranges due to less cache conflicts. This effect becomes visible in Figure 6.13 as
shift of the second step from 512 kB to 2 MB for the skewed cache variants.

Finally, as last benchmark, MiBench has been evaluated in small and large
configuration. The individual results are visualized in Figure 6.14 and Figure 6.15
respectively. On average, the achieved performance results in MiBench are very
similar to the results from the GAP benchmark suite. Again, caches with BIP and
LRU replacement policy outperform the configurations with random replacement
policy by a few percent. However, in some individual benchmarks (e.g., qsort in

6.4. Performance Evaluation 129

CR
C3
2
FF
T
ad
pc
m

ba
sic
ma
th

bit
co
un
t

blo
wfi
sh

dij
ks
tra gs

m
jp
eg

lam
e
ma
d

pa
tri
cia

qs
or
t

rij
nd
ae
l
sh
a

str
ing
sea
rch
su
sa
n

tiff
2b
w

tiff
2r
gb
a

tiff
dit
he
r

tiff
me
dia
n

ty
pe
set

m
ea

n

0

2

4

H
it
R
at
e

∆
[%

]
(h
ig
he
r
is

be
tt
er
)

BIP LRU SCv1 SCv2 Skewed

Figure 6.14: Cache hit rate, simulated with gem5, for MiBench in small configuration
compared to random replacement.

small, jpeg in large), skewed cache architectures like ScatterCache outmatch
the fixed set appraoches.

In summary, our evaluations with gem5 in full system simulation mode show
that the performance of ScatterCache, in terms of hit rate, is basically identical
to contemporary fixed set-associative caches with random replacement policy.
Considering that we employ the same replacement strategy, this is an absolutely
satifying result by itself. Moreover, no tests indicated any notable performance
degradation and in some tests ScatterCache even outperformed BIP and LRU
replacement policies.

6.4.4 Cache Simulation and SPEC Results
Lastly, we evaluated the performance of ScatterCache using the SPEC CPU
2017 [Sta] benchmark with both the “SPECspeed 2017 Integer” and “SPECspeed
2017 Floating Point” suites. We performed all benchmarks in these suites with
the exception of gcc, wrf and cam4, as these failed to compile on our system.
Because these benchmarks are too large to be run in full system simulation, we
created a software cache simulator, capable of simulating different cache models
and replacement policies. Even so, the benchmarks proved to be too large to
run in full, so we opted to run segments of 250 million instructions from each,
following the methodology of Qureshi et al. [Qur+07]. We made an effort to select
parts of the benchmarks that are representative of their respective core workloads.
To be able to run the benchmarks with our simulator, we recorded a trace of all
instruction addresses and memory accesses with the Intel PIN Tool [Int]. We
then replayed this access stream for different cache configurations. The simulator
implements the set-associative replacement policies Pseudo-LRU (Tree-PLRU),
LRU (ideal), BIP as described in [Qur+07], and random replacement, as well
as the two ScatterCache variants. The number of ways per set, total cache

6.4. Performance Evaluation 130

CR
C3
2
FF
T
ad
pc
m

ba
sic
ma
th

bit
co
un
t

blo
wfi
sh

dij
ks
tra gs

m
jp
eg

lam
e
ma
d

pa
tri
cia

qs
or
t

rij
nd
ae
l
sh
a

str
ing
sea
rch
su
sa
n

tiff
2b
w

tiff
2r
gb
a

tiff
dit
he
r

tiff
me
dia
n

ty
pe
set

m
ea

n

0

2

4

6

H
it
R
at
e

∆
[%

]
(h
ig
he
r
is

be
tt
er
)

BIP LRU SCv1 SCv2 Skewed

Figure 6.15: Cache hit rate, simulated with gem5, for MiBench in large configuration
compared to random replacement.

size, number of slices, and cache line size are fully configurable. Additionally,
the simulator supports multiple levels of inclusive caches, as well as a cache
that is split for data and instructions. All simulations were run on an inclusive
two level cache, where the L1 was separated into instruction and data caches,
both of which use LRU replacement. Figure 6.16 shows results for the cache
configuration, as described in Section 6.4.1, as the difference in percentage points
for last-level hit rates when compared to random replacement. While we can
see large differences in individual tests, the mean shows that both versions of
ScatterCache perform at least as well as random replacement and very similar
to LRU. Using the same cache configuration but with 64 B cache lines, we actually
observe a mean advantage of 0.23 ± 0.76 pp of ScatterCache over random
replacement, where LRU sees a marginally worse result of −0.21± 1.02 pp. On
a larger configuration with 64 B cache lines, 32 kB 8-way L1 and 2 MB 16-way
LLC, the results show a slim improvement of 0.035± 0.10 pp for ScatterCache
and 0.37± 1.14pp for LRU over random replacement.

6.5. Conclusion 131

bw
av
es

ca
ctu
BS
SN

de
ep
sje
ng

ex
ch
an
ge
2

fot
on
ik3
d

im
ag
ick lbm lee

la mc
f

na
b

om
ne
tp
p

pe
rlb
en
ch

po
p2

ro
ms

x2
64

xa
lan
cb
mk xz

m
ea

n
−4

−2

0

2

H
it
R
at
e

∆
[%

]
(h
ig
he
r
is

be
tt
er
)

BIP LRU SCv1 SCv2

Figure 6.16: Average cache hit rate for SPEC CPU 2017 benchmarks compared to
random replacement over 10 runs.

6.5 Conclusion
In this chapter, we presented ScatterCache, a novel cache architecture designed
to make eviction-based cache attacks unpractical by eliminating fixed cache-set
congruences. Internally, ScatterCache combines the individual cache-way
addressing from skewed set-associative caches with a lightweight keyed mapping
function. Additionally, usage of an optional software-controlled tweak, i.e., the
SDID, is supported that enables ScatterCache-aware operating system to
control if data, while shared memory in RAM, should also be shared in the cache.
The resulting design is, in terms of hardware, still very similar to traditional
caches which eases possible migration efforts. Moreover, also runtime performance
of the software on ScatterCache-enabled processors is not curtailed.

In terms of security, attacks on ScatterCache are by construction proba-
bilistic and require that targeted memory accesses can be observed many times
for both, the actual attack and the needed profiling. Furthermore, novel security
policies can be implemented using the added SDID parameter. ScatterCache
is, therefore, definitely an improvement over regular set-associative caches. How-
ever, given that we currently only have comparably simple models to analyze
the design and the resulting security implications, quantifying the security gain
against real-world attacks is still an unsolved problem that requires further
research.

7
Conclusion

In this thesis, we worked towards fixing the shortcomings of current architectures
in the context of physical attacks. To make progress towards the ambitious
goal of building more secure systems, we followed the approach of augmenting
contemporary system architectures with minimal hardware extensions. These
hardware extensions were then used as security-anchor for building further
countermeasures efficiently in software. Following this methodology, we presented
several novel techniques that can be deployed in general-purpose processor-cores
and their memory subsystems, respectively.

In terms of code protection, two hardware-supported CFI schemes were devel-
oped that harden CPUs against software and physical attacks. Both techniques
have been implemented in real processor designs, come with appropriate toolchain
support, and were tested in simulation and/or on actual FPGA/ASIC hardware.

The first scheme, as discussed in Chapter 2, is based on GPSA and extends a
stock processor core (i.e., no added instructions) with a none-invasive signature
monitor that is capable of computing signatures over the executed instructions.
Checking full computed signatures against compile-time derived expected values
is possible at arbitrary programmer defined positions. Additionally, CSM can
be used to check a few bits with every executed instruction. Various signature
functions have been evaluated and the best, in terms of fault attack complexity,
has been implemented in a processor with ARMv7-M instruction set (i.e., similar
to an ARM Cortex-M3). The achieved runtime and size overhead—< 75 % and
< 120 % with 4-bit CSM—is very reasonable for a software-heavy prototype.

Compared to our GPSA implementation, the second scheme—named SCFP—
is more invasive in exchange for stronger security properties (e.g., added confi-
dentiality) and better performance. As presented in Chapter 3, the idea of SCFP
is to place a stateful sponge-based cryptographic primitive between a CPU’s

132

133

fetch and decode stage that continuously decrypts and authenticates instructions.
Programs for such a CPU, hence, have to be encrypted by taking into account the
sequence in which individual instructions have to be executed. During execution
of such a program, any tampering with instructions or their sequence leads to a
pseudo random instruction stream that can hardly be predicted or controlled by
an attacker. SCFP yields fine-grained control-flow integrity and thus prevents,
for instance, code reuse, code injection, as well as fault attacks on the code and
the control flow. For evaluation, we built a RISC-V core with SCFP support
named Remus, which was even fabricated as part of the Patronus chip. On this
chip, code size and execution time overheads of 19.8 % and 9.1 %, respectively,
indicate that SCFP is quite efficient and even meets the requirements of typical
embedded devices.

Following our methodology of building upon minimal hardware extensions,
utilizing SCE techniques like SCFP, a new remote attestation concept featuring
graph-based attestation has been introduced in Chapter 4. Given SCE capable
hardware, this new concept can be implemented purely in software and addition-
ally provides online licensing capabilities. Furthermore, commonly used static
and path-based remote attestation, or any hybrid scheme that combines these
approaches, can be implemented with our attestation scheme too. Our proof of
concept implementation for the Patronus chip, even though it was not highly
optimized, showcases this flexibility.

In the second part of this thesis, two techniques for protecting data in the
memory subsystem of a processor have been investigated. The first contribution
in the memory subsystem domain, as discussed in Chapter 5, is our open-
source framework for building transparent memory encryption and authentication
pipelines. The building blocks of our framework are written in VHDL and, while
being developed for FPGAs, are also suitable for ASIC designs. In addition to
the building blocks, we provide example encryption/authentication pipelines that
feature an AXI4 Interface and showcase the use of various ciphers (e.g., Prince,
AES, Ascon) in different modes of operation (e.g., ECB, CBC, XTS, TEC tree).
The evaluation of all configurations has been performed on a Xilinx Zynq-7020
SoC FPGA where the full memory traffic of the ARM processors running Linux
gets transparently encrypted/authenticated. Our results show that the data
processing of our encryption pipeline is highly efficient and utilizes up to 94 % of
the achievable read bandwidth.

Finally, ScatterCache—a novel cache design that hardens CPU caches
against timing attacks—has been presented in Chapter 6 of this thesis. To ease
adoption, we aimed for building a cache that is as similar as possible to traditional
caches and, at the same time, considerably harder to attack than commodity
designs. In particular, in ScatterCache we retrofit skewed set-associative
caches with a lightweight cryptographic primitive as keyed mapping function.
This approach breaks the fixed cache-set congruences that are the cornerstone
of Prime+Probe attacks and even enables ScatterCache-aware software to
selectively control if memory shared in RAM should also be shared in cache.
Attacks on ScatterCache are by construction probabilistic and require that

134

targeted memory accesses can be observed many times for both, the actual attack
as well as the needed profiling. In terms of performance, our evaluation using
the gem5 full system simulator as well as custom cache simulations show that
performance is on par with traditional fixed-set designs with random replacement
policy. Hence, ScatterCache is a viable drop-in replacement for traditional
cache designs that considerably complicates practical attacks and that features
an extension point on which further policies can be implemented in software.

Outlook
The approaches and techniques developed in this thesis notably advanced the
field of protecting general-purpose processors against physical attacks. However,
although our countermeasures are a solid foundation, we certainly did not manage
to address all problems in this domain. The mapping of our techniques to the
affected attack classes in Figure 1.1 already visualizes a few potential areas
that can be explored in future work. In the following, we discuss some of these
opportunities in addition to selected topics that complement this thesis.

Proactive Protection of Data and Addresses. In terms of processor core
extensions, one of the most important topics for followup work is the protection
of on-chip data and addresses. GPSA and SCFP exclusively protect code but
the actual data—including the corresponding address information—within the
processor, on busses, and in caches, is not yet protected by any of our hardware-
supported countermeasures.

The current approach to deal with this deficiency is to utilize software-
based redundancy approaches, i.e., data encoding, re-computation, round trips.
However, all these approaches have serious drawbacks when they are applied
to general-purpose code. To complement our CFI techniques, future work on
finding suitable hardware-supported data/address protection schemes, or generic
software based-approaches, is needed.

Evaluation of newly added Side Channels. Another interesting avenue for
further research is the evaluation of our techniques regarding newly introduced
side-channels. In particular, most of our designs use cryptographic primitives
as building blocks to achieve their respective goals. However, except for the
RAM encryption, analysis of the leakage for these building blocks, is still an
open research problem.

It would, for example, be interesting if power or EM side-channel leakage from
the permutation within SCFP can effectively be exploited to recover the capacity
of the sponge. Moreover, investigating how the choice of the cryptographic mode
(e.g., keyed vs regular permutation, APE vs SpongeWrap) affects side-channel
leakage would provide important insights regarding the best parameterization.

Development of Special-Purpose Cryptographic Primitives. Finding
suitable new cryptographic primitives for implementing our approaches is another

135

challenge that should be tackled in future work. Currently, lightweight primitives
like Ascon, Prince, and QARMA are used in most of our designs. However,
more specialized primitives could greatly improve our techniques in terms of
applicability, security, latency, and hardware costs.

Having access to a fast block cipher with configurable block size (e.g., between
64 and 128bits) would, for example, permit instantiating AEE-Light in stronger
configurations and with faster error detection on dense ISAs. ScatterCache
would also profit from such a primitive (e.g., with 5 and 15 bits) and enable us,
for example, to actually build SCv2.

Quantifying the Security of Caches against Real Attacks. Another very
interesting opportunity for future work is to quantify the security gain of secure
cache-architectures like ScatterCache against real-world attacks. Neither
our current analytic models nor the available simulation-based approaches can
reliably estimate the actual strength of a cache-architecture.

The used models are still comparably minimalist and consider only isolated
and simplified settings. Full system simulation, on the other hand, is simply
to slow to gather sufficient amounts of usable data. Moreover, building actual
hardware is also not that simple and requires considerable amounts of resources.
Considering the sheer number of recently proposed secure cache-architecture
designs, finding an approach to systematically solve this challenge would be an
important and valuable contribution.

Evaluating our Concepts on Larger Processors. As detailed in Chapter 1,
physical attacks are not only a threat to IoT devices but can also be mounted
on server and cloud hardware. Moreover, features like remote attestation are
especially important in cloud scenarios since the hardware is under the physical
control of an untrusted third party.

It would, therefore, be interesting to investigate if it is sensible to use tech-
niques like SCFP on larger processors—possibly as part of a TEE like SGX. We
expect, for example, that some current properties (e.g., decryption of individual
instructions) have to be sacrificed to reach the required performance target.
However, most likely an actual hardware design is needed to determine how far
our techniques can be pushed and what compromises are needed.

Author’s Publications

[Gro+16] Hannes Gross, Manuel Jelinek, Stefan Mangard, Thomas Unter-
luggauer, and Mario Werner. “Concealing Secrets in Embedded
Processors Designs.” In: Smart Card Research and Advanced Ap-
plications – CARDIS. 2016, pp. 89–104. doi: 10.1007/978-3-319-
54669-8_6.

[Kal+20] Daniel Kales, Sebastian Ramacher, Christian Rechberger, Roman
Walch, and Mario Werner. “Efficient FPGA Implementations of
LowMC and Picnic.” In: The Cryptographers’ Track at the RSA
Conference – CT-RSA. 2020. url: https://eprint.iacr.org/2019/
1368.

[Sch+18b] Robert Schilling, Mario Werner, Pascal Nasahl, and Stefan Man-
gard. “Pointing in the Right Direction - Securing Memory Accesses
in a Faulty World.” In: Annual Computer Security Applications
Conference – ACSAC. 2018, pp. 595–604. doi: 10.1145/3274694.
3274728.

[SWM18] Robert Schilling, Mario Werner, and Stefan Mangard. “Securing
conditional branches in the presence of fault attacks.” In: Design,
Automation & Test in Europe – DATE. 2018, pp. 1586–1591. doi:
10.23919/DATE.2018.8342268.

[UWM17a] Thomas Unterluggauer, Mario Werner, and Stefan Mangard.
“Securing Memory Encryption and Authentication Against Side-
Channel Attacks Using Unprotected Primitives.” In: Conference on
Computer and Communications Security – CCS. 2017, pp. 690–702.
doi: 10.1145/3052973.3052985.

[UWM17b] Thomas Unterluggauer, Mario Werner, and Stefan Mangard.
“Side-channel plaintext-recovery attacks on leakage-resilient en-
cryption.” In: Design, Automation & Test in Europe – DATE. 2017,
pp. 1318–1323. doi: 10.23919/DATE.2017.7927197.

[UWM19] Thomas Unterluggauer, Mario Werner, and Stefan Mangard.
“MEAS: memory encryption and authentication secure against
side-channel attacks.” In: J. Cryptographic Engineering 9 (2019),
pp. 137–158. doi: 10.1007/s13389-018-0180-2.

136

https://doi.org/10.1007/978-3-319-54669-8_6
https://doi.org/10.1007/978-3-319-54669-8_6
https://eprint.iacr.org/2019/1368
https://eprint.iacr.org/2019/1368
https://doi.org/10.1145/3274694.3274728
https://doi.org/10.1145/3274694.3274728
https://doi.org/10.23919/DATE.2018.8342268
https://doi.org/10.1145/3052973.3052985
https://doi.org/10.23919/DATE.2017.7927197
https://doi.org/10.1007/s13389-018-0180-2

137

[Wei+19a] Samuel Weiser, Mario Werner, Ferdinand Brasser, Maja Malenko,
Stefan Mangard, and Ahmad-Reza Sadeghi. “TIMBER-V: Tag-
Isolated Memory Bringing Fine-grained Enclaves to RISC-V.” In:
Network and Distributed System Security Symposium – NDSS. 2019.
url: https://www.ndss-symposium.org/ndss-paper/timber-v-tag-
isolated-memory-bringing-fine-grained-enclaves-to-risc-v/.

[Wer+17] Mario Werner, Thomas Unterluggauer, Robert Schilling, David
Schaffenrath, and Stefan Mangard. “Transparent memory encryp-
tion and authentication.” In: Field Programmable Logic and Appli-
cations – FPL. 2017, pp. 1–6. doi: 10.23919/FPL.2017.8056797.

[Wer+18] Mario Werner, Thomas Unterluggauer, David Schaffenrath, and
Stefan Mangard. “Sponge-Based Control-Flow Protection for IoT
Devices.” In: European Symposium on Security and Privacy – Eu-
roS&P. Best Paper Award. 2018, pp. 214–226. doi: 10.1109/
EuroSP.2018.00023.

[Wer+19a] Mario Werner, Robert Schilling, Thomas Unterluggauer, and
Stefan Mangard. “Protecting RISC-V Processors against Physical
Attacks.” In: Design, Automation & Test in Europe – DATE. 2019,
pp. 1136–1141. doi: 10.23919/DATE.2019.8714811.

[Wer+19b] Mario Werner, Thomas Unterluggauer, Lukas Giner, Michael
Schwarz, Daniel Gruss, and Stefan Mangard. “ScatterCache:
Thwarting Cache Attacks via Cache Set Randomization.” In:
USENIX Security Symposium. 2019, pp. 675–692. url: https://www.
usenix.org/conference/usenixsecurity19/presentation/werner.

[WUW13] Erich Wenger, Thomas Unterluggauer, and Mario Werner.
“8/16/32 Shades of Elliptic Curve Cryptography on Embedded
Processors.” In: Progress in Cryptology – INDOCRYPT. 2013,
pp. 244–261. doi: 10.1007/978-3-319-03515-4_16.

[WW11] Erich Wenger and Mario Werner. “Evaluating 16-Bit Processors
for Elliptic Curve Cryptography.” In: Smart Card Research and
Advanced Applications – CARDIS. 2011, pp. 166–181. doi: 10.1007/
978-3-642-27257-8_11.

[WW17] Samuel Weiser and Mario Werner. “SGXIO: Generic Trusted
I/O Path for Intel SGX.” In: Conference on Data and Application
Security and Privacy – CODASPY. 2017, pp. 261–268. doi: 10.
1145/3029806.3029822.

[WWM15] Mario Werner, Erich Wenger, and Stefan Mangard. “Protecting
the Control Flow of Embedded Processors against Fault Attacks.”
In: Smart Card Research and Advanced Applications – CARDIS.
2015, pp. 161–176. doi: 10.1007/978-3-319-31271-2_10.

https://www.ndss-symposium.org/ndss-paper/timber-v-tag-isolated-memory-bringing-fine-grained-enclaves-to-risc-v/
https://www.ndss-symposium.org/ndss-paper/timber-v-tag-isolated-memory-bringing-fine-grained-enclaves-to-risc-v/
https://doi.org/10.23919/FPL.2017.8056797
https://doi.org/10.1109/EuroSP.2018.00023
https://doi.org/10.1109/EuroSP.2018.00023
https://doi.org/10.23919/DATE.2019.8714811
https://www.usenix.org/conference/usenixsecurity19/presentation/werner
https://www.usenix.org/conference/usenixsecurity19/presentation/werner
https://doi.org/10.1007/978-3-319-03515-4_16
https://doi.org/10.1007/978-3-642-27257-8_11
https://doi.org/10.1007/978-3-642-27257-8_11
https://doi.org/10.1145/3029806.3029822
https://doi.org/10.1145/3029806.3029822
https://doi.org/10.1007/978-3-319-31271-2_10

Bibliography

[7cpa] 7-cpu. ARM Cortex-A57. url: https://www.7-cpu.com/cpu/Cortex-
A57.html (visited on 12/13/2019).

[7cpb] 7-cpu. Intel Skylake. url: https://www.7-cpu.com/cpu/Skylake.
html (visited on 12/13/2019).

[Aba+09] Martín Abadi, Mihai Budiu, Úlfar Erlingsson, and Jay Ligatti.
“Control-flow integrity principles, implementations, and applica-
tions.” In: ACM Trans. Inf. Syst. Secur. 13 (2009), 4:1–4:40. doi:
10.1145/1609956.1609960.

[Abe+16] Tigist Abera, N. Asokan, Lucas Davi, Jan-Erik Ekberg, Thomas
Nyman, Andrew Paverd, Ahmad-Reza Sadeghi, and Gene Tsudik.
“C-FLAT: Control-Flow Attestation for Embedded Systems Soft-
ware.” In: Conference on Computer and Communications Security –
CCS. 2016, pp. 743–754. doi: 10.1145/2976749.2978358.

[ABG10] Onur Aciiçmez, Billy Bob Brumley, and Philipp Grabher. “New
Results on Instruction Cache Attacks.” In: Cryptographic Hardware
and Embedded Systems – CHES. 2010, pp. 110–124. doi: 10.1007/
978-3-642-15031-9_8.

[AES15] Gorka Irazoqui Apecechea, Thomas Eisenbarth, and Berk Sunar.
“S$A: A Shared Cache Attack That Works across Cores and Defies
VM Sandboxing - and Its Application to AES.” In: IEEE Symposium
on Security and Privacy – S&P. 2015, pp. 591–604. doi: 10.1109/
SP.2015.42.

[Agr+02] Dakshi Agrawal, Bruce Archambeault, Josyula R. Rao, and Pankaj
Rohatgi. “The EM Side-Channel(s).” In: Cryptographic Hardware
and Embedded Systems – CHES. 2002, pp. 29–45. doi: 10.1007/3-
540-36400-5_4.

[AJN16] Jean-Philippe Aumasson, Philipp Jovanovic, and Samuel Neves.
NORX v3. Sept. 15, 2016. url: https : / / norx . io/ (visited on
12/11/2019).

[AK97] Ross J. Anderson and Markus G. Kuhn. “Low Cost Attacks on
Tamper Resistant Devices.” In: Security Protocols Workshop – SPW.
1997, pp. 125–136. doi: 10.1007/BFb0028165.

138

https://www.7-cpu.com/cpu/Cortex-A57.html
https://www.7-cpu.com/cpu/Cortex-A57.html
https://www.7-cpu.com/cpu/Skylake.html
https://www.7-cpu.com/cpu/Skylake.html
https://doi.org/10.1145/1609956.1609960
https://doi.org/10.1145/2976749.2978358
https://doi.org/10.1007/978-3-642-15031-9_8
https://doi.org/10.1007/978-3-642-15031-9_8
https://doi.org/10.1109/SP.2015.42
https://doi.org/10.1109/SP.2015.42
https://doi.org/10.1007/3-540-36400-5_4
https://doi.org/10.1007/3-540-36400-5_4
https://norx.io/
https://doi.org/10.1007/BFb0028165

Bibliography 139

[And+14] Elena Andreeva, Begül Bilgin, Andrey Bogdanov, Atul Luykx, Bart
Mennink, Nicky Mouha, and Kan Yasuda. “APE: Authenticated
Permutation-Based Encryption for Lightweight Cryptography.” In:
Fast Software Encryption – FSE. 2014, pp. 168–186. doi: 10.1007/
978-3-662-46706-0_9.

[And+15] Elena Andreeva, Joan Daemen, Bart Mennink, and Gilles Van
Assche. “Security of Keyed Sponge Constructions Using a Modular
Proof Approach.” In: Fast Software Encryption – FSE. 2015, pp. 364–
384. doi: 10.1007/978-3-662-48116-5_18.

[And+16] Elena Andreeva, Begül Bilgin, Andrey Bogdanov, Atul Luykx,
Florian Mendel, Bart Mennink, Nicky Mouha, Qingju Wang, and
Kan Yasuda. PRIMATEs v1.1. July 13, 2016. url: http://web.
archive.org/web/20181228123124/http://primates.ae/ (visited on
12/11/2019).

[Ann16] Anna-senpai. Source code for the Mirai botnet. Sept. 30, 2016. url:
https : / / github . com / jgamblin / Mirai - Source - Code (visited on
01/07/2020).

[Ape+14] Gorka Irazoqui Apecechea, Mehmet Sinan Inci, Thomas Eisenbarth,
and Berk Sunar. “Wait a Minute! A fast, Cross-VM Attack on
AES.” In: Recent Advances in Intrusion Detection – RAID. 2014,
pp. 299–319. doi: 10.1007/978-3-319-11379-1_15.

[Ape+15] Gorka Irazoqui Apecechea, Mehmet Sinan Inci, Thomas Eisenbarth,
and Berk Sunar. “Lucky 13 Strikes Back.” In: Conference on Com-
puter and Communications Security – CCS. 2015, pp. 85–96. doi:
10.1145/2714576.2714625.

[ARM09] ARM. ARM Security Technology Building a Secure System using
TrustZone Technology. ARM. 2009. url: http://infocenter.arm.
com/help/topic/com.arm.doc.prd29- genc- 009492c/PRD29- GENC-
009492C_trustzone_security_whitepaper.pdf.

[Aro+06] Divya Arora, Srivaths Ravi, Anand Raghunathan, and Niraj K.
Jha. “Hardware-Assisted Run-Time Monitoring for Secure Program
Execution on Embedded Processors.” In: IEEE Trans. VLSI Syst.
14 (2006), pp. 1295–1308. doi: 10.1109/TVLSI.2006.887799.

[Arr+18] Victor Arribas, Begül Bilgin, George Petrides, Svetla Nikova, and
Vincent Rijmen. “Rhythmic Keccak: SCA Security and Low Latency
in HW.” In: IACR Trans. Cryptogr. Hardw. Embed. Syst. (2018),
pp. 269–290. doi: 10.13154/tches.v2018.i1.269-290.

[Aum+02] Christian Aumüller, Peter Bier, Wieland Fischer, Peter Hofreiter,
and Jean-Pierre Seifert. “Fault Attacks on RSA with CRT: Con-
crete Results and Practical Countermeasures.” In: Cryptographic
Hardware and Embedded Systems – CHES. 2002, pp. 260–275. doi:
10.1007/3-540-36400-5_20.

https://doi.org/10.1007/978-3-662-46706-0_9
https://doi.org/10.1007/978-3-662-46706-0_9
https://doi.org/10.1007/978-3-662-48116-5_18
http://web.archive.org/web/20181228123124/http://primates.ae/
http://web.archive.org/web/20181228123124/http://primates.ae/
https://github.com/jgamblin/Mirai-Source-Code
https://doi.org/10.1007/978-3-319-11379-1_15
https://doi.org/10.1145/2714576.2714625
http://infocenter.arm.com/help/topic/com.arm.doc.prd29-genc-009492c/PRD29-GENC-009492C_trustzone_security_whitepaper.pdf
http://infocenter.arm.com/help/topic/com.arm.doc.prd29-genc-009492c/PRD29-GENC-009492C_trustzone_security_whitepaper.pdf
http://infocenter.arm.com/help/topic/com.arm.doc.prd29-genc-009492c/PRD29-GENC-009492C_trustzone_security_whitepaper.pdf
https://doi.org/10.1109/TVLSI.2006.887799
https://doi.org/10.13154/tches.v2018.i1.269-290
https://doi.org/10.1007/3-540-36400-5_20

Bibliography 140

[Ava17] Roberto Avanzi. “The QARMA Block Cipher Family. Almost MDS
Matrices Over Rings With Zero Divisors, Nearly Symmetric Even-
Mansour Constructions With Non-Involutory Central Rounds, and
Search Heuristics for Low-Latency S-Boxes.” In: IACR Trans. Sym-
metric Cryptol. (2017), pp. 4–44. doi: 10.13154/tosc.v2017.i1.4-
44.

[BAP15] Scott Beamer, Krste Asanovic, and David A. Patterson. “The GAP
Benchmark Suite.” In: arXiv abs/1508.03619 (2015). url: http:
//arxiv.org/abs/1508.03619.

[Bar+04] Hagai Bar-El, Hamid Choukri, David Naccache, Michael Tunstall,
and Claire Whelan. “The Sorcerer’s Apprentice Guide to Fault
Attacks.” In: ePrint 2004/100 (2004). url: http://eprint.iacr.
org/2004/100.

[BDL97] Dan Boneh, Richard A. DeMillo, and Richard J. Lipton. “On
the Importance of Checking Cryptographic Protocols for Faults
(Extended Abstract).” In: Advances in Cryptology – EUROCRYPT.
1997, pp. 37–51. doi: 10.1007/3-540-69053-0_4.

[Ber+08] Guido Bertoni, Joan Daemen, Michaël Peeters, and Gilles Van
Assche. “On the Indifferentiability of the Sponge Construction.” In:
Advances in Cryptology – EUROCRYPT. 2008, pp. 181–197. doi:
10.1007/978-3-540-78967-3_11.

[Ber+11a] Guido Bertoni, Joan Daemen, Michaël Peeters, and Gilles Van
Assche. “Duplexing the sponge: single-pass authenticated encryption
and other applications.” In: ePrint 2011/499 (2011). url: http:
//eprint.iacr.org/2011/499.

[Ber+11b] Guido Bertoni, Joan Daemen, Michaël Peeters, and Gilles Van
Assche. “On the security of the keyed sponge construction.” In:
SKEW (2011). url: https://keccak.team/files/SpongeKeyed.pdf.

[Ber+12a] Guido Bertoni, Joan Daemen, Michaël Peeters, Gilles Van Assche,
and Ronny Van Keer. Keccak implementation overview. May 29,
2012. url: http://keccak.noekeon.org/Keccak- implementation-
3.2.pdf (visited on 12/13/2019).

[Ber+12b] Guido Bertoni, Joan Daemen, Michael Peeters, and Gilles Van
Assche. “Permutation-based encryption, authentication and authen-
ticated encryption.” In: Workshop Records of DIAC 2012. 2012. url:
https://keccak.team/files/KeccakDIAC2012.pdf.

[Ber+16a] Guido Bertoni, Joan Daemen, Michaël Peeters, Gilles Van Ass-
che, and Ronny Van Keer. CAESAR submission: KETJE v2.
Sept. 15, 2016. url: https://keccak.team/ketje.html (visited on
12/11/2019).

https://doi.org/10.13154/tosc.v2017.i1.4-44
https://doi.org/10.13154/tosc.v2017.i1.4-44
http://arxiv.org/abs/1508.03619
http://arxiv.org/abs/1508.03619
http://eprint.iacr.org/2004/100
http://eprint.iacr.org/2004/100
https://doi.org/10.1007/3-540-69053-0_4
https://doi.org/10.1007/978-3-540-78967-3_11
http://eprint.iacr.org/2011/499
http://eprint.iacr.org/2011/499
https://keccak.team/files/SpongeKeyed.pdf
http://keccak.noekeon.org/Keccak-implementation-3.2.pdf
http://keccak.noekeon.org/Keccak-implementation-3.2.pdf
https://keccak.team/files/KeccakDIAC2012.pdf
https://keccak.team/ketje.html

Bibliography 141

[Ber+16b] Guido Bertoni, Joan Daemen, Michaël Peeters, Gilles Van Ass-
che, and Ronny Van Keer. CAESAR submission: KEYAK v2.
Sept. 15, 2016. url: https://keccak.team/keyak.html (visited
on 12/11/2019).

[Ber05] Daniel Julius Bernstein. Cache-Timing Attacks on AES. Tech. rep.
University of Illinois at Chicago, 2005. url: http://cr.yp.to/
antiforgery/cachetiming-20050414.pdf.

[Ber19] Daniel Julius Bernstein. CAESAR: Competition for Authenticated
Encryption: Security, Applicability, and Robustness. Feb. 20, 2019.
url: https://competitions.cr.yp.to/caesar- submissions.html
(visited on 12/11/2019).

[BH09] Billy Bob Brumley and Risto M. Hakala. “Cache-Timing Template
Attacks.” In: Advances in Cryptology – ASIACRYPT. 2009, pp. 667–
684. doi: 10.1007/978-3-642-10366-7_39.

[Bin+11] Nathan L. Binkert et al. “The gem5 simulator.” In: SIGARCH
Computer Architecture News 39 (2011), pp. 1–7. doi: 10.1145/
2024716.2024718.

[Bio+18] Andrea Biondo, Mauro Conti, Lucas Davi, Tommaso Frassetto,
and Ahmad-Reza Sadeghi. “The Guard’s Dilemma: Efficient Code-
Reuse Attacks Against Intel SGX.” In: USENIX Security Symposium.
2018, pp. 1213–1227. url: https://www.usenix.org/conference/
usenixsecurity18/presentation/biondo.

[Ble+11] Tyler K. Bletsch, Xuxian Jiang, Vincent W. Freeh, and Zhenkai
Liang. “Jump-oriented programming: a new class of code-reuse
attack.” In: Conference on Computer and Communications Security
– CCS. 2011, pp. 30–40. doi: 10.1145/1966913.1966919.

[Bod+20] Rahul Bodduna, Vinod Ganesan, Patanjali SLPSK, Kamakoti
Veezhinathan, and Chester Rebeiro. “Brutus: Refuting the Secu-
rity Claims of the Cache Timing Randomization Countermeasure
Proposed in CEASER.” In: IEEE Computer Architecture Letters 19
(2020), pp. 9–12. doi: 10.1109/LCA.2020.2964212.

[Bor+12a] Julia Borghoff et al. “PRINCE - A Low-Latency Block Cipher
for Pervasive Computing Applications - Extended Abstract.” In:
Advances in Cryptology – ASIACRYPT. 2012, pp. 208–225. doi:
10.1007/978-3-642-34961-4_14.

[Bor+12b] Julia Borghoff et al. “PRINCE - A Low-latency Block Cipher
for Pervasive Computing Applications (Full version).” In: ePrint
2012/529 (2012). url: http://eprint.iacr.org/2012/529.

[Bul+18] Jo Van Bulck et al. “Foreshadow: Extracting the Keys to the
Intel SGX Kingdom with Transient Out-of-Order Execution.” In:
USENIX Security Symposium. 2018, pp. 991–1008. url: https://www.
usenix.org/conference/usenixsecurity18/presentation/bulck.

https://keccak.team/keyak.html
http://cr.yp.to/antiforgery/cachetiming-20050414.pdf
http://cr.yp.to/antiforgery/cachetiming-20050414.pdf
https://competitions.cr.yp.to/caesar-submissions.html
https://doi.org/10.1007/978-3-642-10366-7_39
https://doi.org/10.1145/2024716.2024718
https://doi.org/10.1145/2024716.2024718
https://www.usenix.org/conference/usenixsecurity18/presentation/biondo
https://www.usenix.org/conference/usenixsecurity18/presentation/biondo
https://doi.org/10.1145/1966913.1966919
https://doi.org/10.1109/LCA.2020.2964212
https://doi.org/10.1007/978-3-642-34961-4_14
http://eprint.iacr.org/2012/529
https://www.usenix.org/conference/usenixsecurity18/presentation/bulck
https://www.usenix.org/conference/usenixsecurity18/presentation/bulck

Bibliography 142

[Car+15] Nicholas Carlini, Antonio Barresi, Mathias Payer, David A. Wagner,
and Thomas R. Gross. “Control-Flow Bending: On the Effectiveness
of Control-Flow Integrity.” In: USENIX Security Symposium. 2015,
pp. 161–176. url: https://www.usenix.org/conference/usenixsecu
rity15/technical-sessions/presentation/carlini.

[CC11] Liang Cai and Hao Chen. “TouchLogger: Inferring Keystrokes on
Touch Screen from Smartphone Motion.” In: USENIX Security
Symposium. 2011. url: https://www.usenix.org/conference/hotsec
11/touchlogger-inferring-keystrokes-touch-screen-smartphone-
motion.

[Cel+19] Christopher Celio, Pi-Feng Chiu, Krste Asanovic, Borivoje Nikolic,
and David A. Patterson. “BROOM: An Open-Source Out-of-Order
Processor With Resilient Low-Voltage Operation in 28-nm CMOS.”
In: IEEE Micro 39 (2019), pp. 52–60. doi: 10 . 1109 / MM . 2019 .
2897782.

[CIS16] Yahoo CISO. An Important Message About Yahoo User Security.
Sept. 22, 2016. url: https://yahoo.tumblr.com/post/150781911849/
an- important- message- about- yahoo- user- security (visited on
01/07/2020).

[Cle+16] Ruan de Clercq, Ronald De Keulenaer, Bart Coppens, Bohan Yang,
Pieter Maene, Koen De Bosschere, Bart Preneel, Bjorn De Sutter,
and Ingrid Verbauwhede. “SOFIA: Software and control flow in-
tegrity architecture.” In: Design, Automation & Test in Europe –
DATE. 2016, pp. 1172–1177. url: http://ieeexplore.ieee.org/
document/7459489/.

[Cle+17a] Abraham A. Clements, Naif Saleh Almakhdhub, Khaled S. Saab,
Prashast Srivastava, Jinkyu Koo, Saurabh Bagchi, and Mathias
Payer. “Protecting Bare-Metal Embedded Systems with Privilege
Overlays.” In: IEEE Symposium on Security and Privacy – S&P.
2017, pp. 289–303. doi: 10.1109/SP.2017.37.

[Cle+17b] Ruan de Clercq, Johannes Götzfried, David Übler, Pieter Maene,
and Ingrid Verbauwhede. “SOFIA: Software and control flow in-
tegrity architecture.” In: Computers & Security 68 (2017), pp. 16–35.
doi: 10.1016/j.cose.2017.03.013.

[Cle+17c] Ruan de Clercq, Ronald De Keulenaer, Pieter Maene, Bart Preneel,
Bjorn De Sutter, and Ingrid Verbauwhede. “SCM: Secure Code
Memory Architecture.” In: Conference on Computer and Commu-
nications Security – CCS. 2017, pp. 771–776. doi: 10.1145/3052973.
3053044.

[Coj+19] Lucian Cojocar, Kaveh Razavi, Cristiano Giuffrida, and Herbert Bos.
“Exploiting Correcting Codes: On the Effectiveness of ECC Memory
Against Rowhammer Attacks.” In: IEEE Symposium on Security
and Privacy – S&P. 2019, pp. 55–71. doi: 10.1109/SP.2019.00089.

https://www.usenix.org/conference/usenixsecurity15/technical-sessions/presentation/carlini
https://www.usenix.org/conference/usenixsecurity15/technical-sessions/presentation/carlini
https://www.usenix.org/conference/hotsec11/touchlogger-inferring-keystrokes-touch-screen-smartphone-motion
https://www.usenix.org/conference/hotsec11/touchlogger-inferring-keystrokes-touch-screen-smartphone-motion
https://www.usenix.org/conference/hotsec11/touchlogger-inferring-keystrokes-touch-screen-smartphone-motion
https://doi.org/10.1109/MM.2019.2897782
https://doi.org/10.1109/MM.2019.2897782
https://yahoo.tumblr.com/post/150781911849/an-important-message-about-yahoo-user-security
https://yahoo.tumblr.com/post/150781911849/an-important-message-about-yahoo-user-security
http://ieeexplore.ieee.org/document/7459489/
http://ieeexplore.ieee.org/document/7459489/
https://doi.org/10.1109/SP.2017.37
https://doi.org/10.1016/j.cose.2017.03.013
https://doi.org/10.1145/3052973.3053044
https://doi.org/10.1145/3052973.3053044
https://doi.org/10.1109/SP.2019.00089

Bibliography 143

[Cop+09] Bart Coppens, Ingrid Verbauwhede, Koen De Bosschere, and Bjorn
De Sutter. “Practical Mitigations for Timing-Based Side-Channel
Attacks on Modern x86 Processors.” In: IEEE Symposium on Secu-
rity and Privacy – S&P. 2009, pp. 45–60. doi: 10.1109/SP.2009.19.

[Cor11] Sony Corporation. Sony Online Entertainment announces theft
of data from its systems. May 3, 2011. url: https://www.sony.
net/SonyInfo/News/Press/201105/11-0503E/index.html (visited on
01/07/2020).

[Cor13] MITRE Corporation. CVE-2014-0160, also known as Heartbleed.
Dec. 3, 2013. url: https://cve.mitre.org/cgi-bin/cvename.cgi?
name=CVE-2014-0160 (visited on 01/07/2020).

[Cor14] MITRE Corporation. CVE-2014-6271, also known as Shellshock.
Sept. 9, 2014. url: http://cve.mitre.org/cgi-bin/cvename.cgi?
name=CVE-2014-6271 (visited on 01/07/2020).

[Cor16] MITRE Corporation. CVE-2016-5195, also known as Dirty COW.
May 31, 2016. url: https://cve.mitre.org/cgi-bin/cvename.cgi?
name=CVE-2016-5195 (visited on 01/07/2020).

[Cow98] Crispan Cowan. “StackGuard: Automatic Adaptive Detection and
Prevention of Buffer-Overflow Attacks.” In: USENIX Security Sym-
posium. 1998. url: https : / / www . usenix . org / conference / 7th -
usenix-security-symposium/stackguard-automatic-adaptive-dete
ction-and-prevention.

[Dav+14] Lucas Davi, Ahmad-Reza Sadeghi, Daniel Lehmann, and Fabian
Monrose. “Stitching the Gadgets: On the Ineffectiveness of Coarse-
Grained Control-Flow Integrity Protection.” In: USENIX Security
Symposium. 2014, pp. 401–416. url: https://www.usenix.org/
conference/usenixsecurity14/technical-sessions/presentation/
davi.

[Des+17] Ghada Dessouky, Shaza Zeitouni, Thomas Nyman, Andrew Paverd,
Lucas Davi, Patrick Koeberl, N. Asokan, and Ahmad-Reza Sadeghi.
“LO-FAT: Low-Overhead Control Flow ATtestation in Hardware.”
In: Design Automation Conference – DAC. 2017, 24:1–24:6. doi:
10.1145/3061639.3062276.

[Det] CVE Details. Vulnerabilities per Android Version. url: http://www.
cvedetails.com/version-list/1224/19997/1/Google-Android.html
(visited on 01/07/2020).

[Dey+14] Sanorita Dey, Nirupam Roy, Wenyuan Xu, Romit Roy Choudhury,
and Srihari Nelakuditi. “AccelPrint: Imperfections of Accelerometers
Make Smartphones Trackable.” In: Network and Distributed System
Security Symposium – NDSS. 2014. url: https://www.ndss-sym
posium.org/ndss2014/accelprint-imperfections-accelerometers-
make-smartphones-trackable.

https://doi.org/10.1109/SP.2009.19
https://www.sony.net/SonyInfo/News/Press/201105/11-0503E/index.html
https://www.sony.net/SonyInfo/News/Press/201105/11-0503E/index.html
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2014-0160
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2014-0160
http://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2014-6271
http://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2014-6271
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2016-5195
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2016-5195
https://www.usenix.org/conference/7th-usenix-security-symposium/stackguard-automatic-adaptive-detection-and-prevention
https://www.usenix.org/conference/7th-usenix-security-symposium/stackguard-automatic-adaptive-detection-and-prevention
https://www.usenix.org/conference/7th-usenix-security-symposium/stackguard-automatic-adaptive-detection-and-prevention
https://www.usenix.org/conference/usenixsecurity14/technical-sessions/presentation/davi
https://www.usenix.org/conference/usenixsecurity14/technical-sessions/presentation/davi
https://www.usenix.org/conference/usenixsecurity14/technical-sessions/presentation/davi
https://doi.org/10.1145/3061639.3062276
http://www.cvedetails.com/version-list/1224/19997/1/Google-Android.html
http://www.cvedetails.com/version-list/1224/19997/1/Google-Android.html
https://www.ndss-symposium.org/ndss2014/accelprint-imperfections-accelerometers-make-smartphones-trackable
https://www.ndss-symposium.org/ndss2014/accelprint-imperfections-accelerometers-make-smartphones-trackable
https://www.ndss-symposium.org/ndss2014/accelprint-imperfections-accelerometers-make-smartphones-trackable

Bibliography 144

[DFS19] Ghada Dessouky, Tommaso Frassetto, and Ahmad-Reza Sadeghi.
“HybCache: Hybrid Side-Channel-Resilient Caches for Trusted Exe-
cution Environments.” In: arXiv abs/1909.09599 (2019). url: http:
//arxiv.org/abs/1909.09599.

[DK06] Guillaume Duc and Ronan Keryell. “CryptoPage: An Efficient
Secure Architecture with Memory Encryption, Integrity and Infor-
mation Leakage Protection.” In: Annual Computer Security Appli-
cations Conference – ACSAC. 2006, pp. 483–492. doi: 10.1109/
ACSAC.2006.21.

[DK17] Goran Doychev and Boris Köpf. “Rigorous analysis of software
countermeasures against cache attacks.” In: Programming Language
Design and Implementation – PLDI. 2017, pp. 406–421. doi: 10.
1145/3062341.3062388.

[Dob+16] Christoph Dobraunig, Maria Eichlseder, Florian Mendel, and Martin
Schläffer. ASCON v1.2. Sept. 15, 2016. url: https://ascon.iaik.
tugraz.at/ (visited on 12/11/2019).

[Doy+13] Goran Doychev, Dominik Feld, Boris Köpf, Laurent Mauborgne, and
Jan Reineke. “CacheAudit: A Tool for the Static Analysis of Cache
Side Channels.” In: USENIX Security Symposium. 2013, pp. 431–
446. url: https://www.usenix.org/conference/usenixsecurity13/
technical-sessions/paper/doychev.

[DXS19] Shuwen Deng, Wenjie Xiong, and Jakub Szefer. “Analysis of Se-
cure Caches and Timing-Based Side-Channel Attacks.” In: ePrint
2019/167 (2019). url: https://eprint.iacr.org/2019/167.

[Elb+07] Reouven Elbaz, David Champagne, Ruby B. Lee, Lionel Torres,
Gilles Sassatelli, and Pierre Guillemin. “TEC-Tree: A Low-Cost,
Parallelizable Tree for Efficient Defense Against Memory Replay At-
tacks.” In: Cryptographic Hardware and Embedded Systems – CHES.
2007, pp. 289–302. doi: 10.1007/978-3-540-74735-2_20.

[Elb+09] Reouven Elbaz, David Champagne, Catherine H. Gebotys, Ruby
B. Lee, Nachiketh R. Potlapally, and Lionel Torres. “Hardware
Mechanisms for Memory Authentication: A Survey of Existing
Techniques and Engines.” In: Trans. Computational Science 4 (2009),
pp. 1–22. doi: 10.1007/978-3-642-01004-0_1.

[Eld+12] Karim Eldefrawy, Gene Tsudik, Aurélien Francillon, and Daniele
Perito. “SMART: Secure and Minimal Architecture for (Establishing
Dynamic) Root of Trust.” In: Network and Distributed System
Security Symposium – NDSS. 2012. url: https://www.ndss-sym
posium.org/ndss2012/smart- secure- and- minimal- architecture-
establishing-dynamic-root-trust.

[ETH17a] ETH Zurich. PULPino Source Repository. 2017. url: https://
github.com/pulp-platform/pulpino (visited on 12/11/2019).

http://arxiv.org/abs/1909.09599
http://arxiv.org/abs/1909.09599
https://doi.org/10.1109/ACSAC.2006.21
https://doi.org/10.1109/ACSAC.2006.21
https://doi.org/10.1145/3062341.3062388
https://doi.org/10.1145/3062341.3062388
https://ascon.iaik.tugraz.at/
https://ascon.iaik.tugraz.at/
https://www.usenix.org/conference/usenixsecurity13/technical-sessions/paper/doychev
https://www.usenix.org/conference/usenixsecurity13/technical-sessions/paper/doychev
https://eprint.iacr.org/2019/167
https://doi.org/10.1007/978-3-540-74735-2_20
https://doi.org/10.1007/978-3-642-01004-0_1
https://www.ndss-symposium.org/ndss2012/smart-secure-and-minimal-architecture-establishing-dynamic-root-trust
https://www.ndss-symposium.org/ndss2012/smart-secure-and-minimal-architecture-establishing-dynamic-root-trust
https://www.ndss-symposium.org/ndss2012/smart-secure-and-minimal-architecture-establishing-dynamic-root-trust
https://github.com/pulp-platform/pulpino
https://github.com/pulp-platform/pulpino

Bibliography 145

[ETH17b] ETH Zurich. RI5CY Source Repository. 2017. url: https://github.
com/pulp-platform/riscv (visited on 12/11/2019).

[ETH18] ETH Zurich. PULPissimo Source Repository. 2018. url: https:
//github.com/pulp-platform/pulpissimo (visited on 12/11/2019).

[Eur19] Europractice Web Archive. TSMC Standard cell libraries. Apr. 1,
2019. url: http : / / web . archive . org / web / 20190401134822 / http
: / / www . europractice - ic . com / libraries _ TSMC . php (visited on
12/13/2019).

[Fac] Facebook. Bug Bounty Program. url: https://www.facebook.com/
whitehat (visited on 01/07/2020).

[fai14] fail0verflow. Console Hacking 2013: Omake. Jan. 2, 2014. url:
https : / / fail0verflow . com / blog / 2014 / console - hacking - 2013 -
omake/ (visited on 01/07/2020).

[fai15] fail0verflow. Console Hacking 2015: Liner Notes. Dec. 30, 2015.
url: https://fail0verflow.com/blog/2015/console-hacking-2015-
liner-notes/ (visited on 01/07/2020).

[FPC09] Aurélien Francillon, Daniele Perito, and Claude Castelluccia. “De-
fending Embedded Systems Against Control Flow Attacks.” In:
Proceedings of the First ACM Workshop on Secure Execution of Un-
trusted Code. ACM, 2009, pp. 19–26. doi: 10.1145/1655077.1655083.

[Fra+14] Aurélien Francillon, Quan Nguyen, Kasper Bonne Rasmussen, and
Gene Tsudik. “A minimalist approach to Remote Attestation.” In:
Design, Automation & Test in Europe – DATE. 2014, pp. 1–6. doi:
10.7873/DATE.2014.257.

[fre] free60project. The Xbox 360 reset glitch hack. url: https://fre
e60project.github.io/wiki/Reset_Glitch_Hack.html (visited on
01/07/2020).

[Fru05] Clemens Fruhwirth. New methods in hard disk encryption. Tech.
rep. Vienna University of Technology, 2005. url: http://clemens.
endorphin.org/nmihde/nmihde-A4-ds.pdf.

[Gal+19] Mark Gallagher et al. “Morpheus: A Vulnerability-Tolerant Secure
Architecture Based on Ensembles of Moving Target Defenses with
Churn.” In: Architectural Support for Programming Languages and
Operating Systems – ASPLOS. 2019, pp. 469–484. doi: 10.1145/
3297858.3304037.

[GBK11] David Gullasch, Endre Bangerter, and Stephan Krenn. “Cache
Games - Bringing Access-Based Cache Attacks on AES to Practice.”
In: IEEE Symposium on Security and Privacy – S&P. 2011, pp. 490–
505. doi: 10.1109/SP.2011.22.

https://github.com/pulp-platform/riscv
https://github.com/pulp-platform/riscv
https://github.com/pulp-platform/pulpissimo
https://github.com/pulp-platform/pulpissimo
http://web.archive.org/web/20190401134822/http://www.europractice-ic.com/libraries_TSMC.php
http://web.archive.org/web/20190401134822/http://www.europractice-ic.com/libraries_TSMC.php
https://www.facebook.com/whitehat
https://www.facebook.com/whitehat
https://fail0verflow.com/blog/2014/console-hacking-2013-omake/
https://fail0verflow.com/blog/2014/console-hacking-2013-omake/
https://fail0verflow.com/blog/2015/console-hacking-2015-liner-notes/
https://fail0verflow.com/blog/2015/console-hacking-2015-liner-notes/
https://doi.org/10.1145/1655077.1655083
https://doi.org/10.7873/DATE.2014.257
https://free60project.github.io/wiki/Reset_Glitch_Hack.html
https://free60project.github.io/wiki/Reset_Glitch_Hack.html
http://clemens.endorphin.org/nmihde/nmihde-A4-ds.pdf
http://clemens.endorphin.org/nmihde/nmihde-A4-ds.pdf
https://doi.org/10.1145/3297858.3304037
https://doi.org/10.1145/3297858.3304037
https://doi.org/10.1109/SP.2011.22

Bibliography 146

[Gli+15] Danilo Gligoroski, Hristina Mihajloska, Simona Samardjiska, Håkon
Jacobsen, Mohamed El-Hadedy, Rune Erlend Jensen, and Daniel
Otte. π–Cipher v2.01. Oct. 12, 2015. url: http://pi-cipher.org/
(visited on 12/11/2019).

[GMM16] Daniel Gruss, Clémentine Maurice, and Stefan Mangard. “Rowham-
mer.js: A Remote Software-Induced Fault Attack in JavaScript.” In:
Detection of Intrusions and Malware & Vulnerability Assessment –
DIMVA. 2016, pp. 300–321. doi: 10.1007/978-3-319-40667-1_15.

[Gök+14] Enes Göktas, Elias Athanasopoulos, Herbert Bos, and Georgios
Portokalidis. “Out of Control: Overcoming Control-Flow Integrity.”
In: IEEE Symposium on Security and Privacy – S&P. 2014, pp. 575–
589. doi: 10.1109/SP.2014.43.

[Gol+06] Olga Goloubeva, Maurizio Rebaudengo, Matteo Sonza Reorda, and
Massimo Violante. Software-Implemented Hardware Fault Tolerance.
Springer, 2006. isbn: 978-0-387-26060-0. doi: 10.1007/0-387-32937-
4.

[Gooa] Google. Distribution of Android platform versions. url: https :
//developer.android.com/about/dashboards/index.html#Platform
(visited on 01/07/2020).

[Goob] Google. Vulnerability Reward Program. url: https://www.google.
com/about/appsecurity/reward-program/ (visited on 01/07/2020).

[GP99] Louis Goubin and Jacques Patarin. “DES and Differential Power
Analysis (The "Duplication" Method).” In: Cryptographic Hardware
and Embedded Systems – CHES. 1999, pp. 158–172. doi: 10.1007/3-
540-48059-5_15.

[Gra+17] Ben Gras, Kaveh Razavi, Erik Bosman, Herbert Bos, and Cristiano
Giuffrida. “ASLR on the Line: Practical Cache Attacks on the
MMU.” In: Network and Distributed System Security Symposium –
NDSS. 2017. url: https://www.ndss-symposium.org/ndss2017/ndss-
2017-programme/aslrcache-practical-cache-attacks-mmu/.

[Gru+16a] Daniel Gruss, Clémentine Maurice, Anders Fogh, Moritz Lipp, and
Stefan Mangard. “Prefetch Side-Channel Attacks: Bypassing SMAP
and Kernel ASLR.” In: Conference on Computer and Communi-
cations Security – CCS. 2016, pp. 368–379. doi: 10.1145/2976749.
2978356.

[Gru+16b] Daniel Gruss, Clémentine Maurice, Klaus Wagner, and Stefan Man-
gard. “Flush+Flush: A Fast and Stealthy Cache Attack.” In: De-
tection of Intrusions and Malware & Vulnerability Assessment –
DIMVA. 2016, pp. 279–299. doi: 10.1007/978-3-319-40667-1_14.

http://pi-cipher.org/
https://doi.org/10.1007/978-3-319-40667-1_15
https://doi.org/10.1109/SP.2014.43
https://doi.org/10.1007/0-387-32937-4
https://doi.org/10.1007/0-387-32937-4
https://developer.android.com/about/dashboards/index.html#Platform
https://developer.android.com/about/dashboards/index.html#Platform
https://www.google.com/about/appsecurity/reward-program/
https://www.google.com/about/appsecurity/reward-program/
https://doi.org/10.1007/3-540-48059-5_15
https://doi.org/10.1007/3-540-48059-5_15
https://www.ndss-symposium.org/ndss2017/ndss-2017-programme/aslrcache-practical-cache-attacks-mmu/
https://www.ndss-symposium.org/ndss2017/ndss-2017-programme/aslrcache-practical-cache-attacks-mmu/
https://doi.org/10.1145/2976749.2978356
https://doi.org/10.1145/2976749.2978356
https://doi.org/10.1007/978-3-319-40667-1_14

Bibliography 147

[Gru+18] Daniel Gruss, Moritz Lipp, Michael Schwarz, Daniel Genkin, Jonas
Juffinger, Sioli O’Connell, Wolfgang Schoechl, and Yuval Yarom.
“Another Flip in the Wall of Rowhammer Defenses.” In: IEEE
Symposium on Security and Privacy – S&P. 2018, pp. 245–261. doi:
10.1109/SP.2018.00031.

[GSM15] Daniel Gruss, Raphael Spreitzer, and Stefan Mangard. “Cache
Template Attacks: Automating Attacks on Inclusive Last-Level
Caches.” In: USENIX Security Symposium. 2015, pp. 897–912. url:
https://www.usenix.org/conference/usenixsecurity15/technical-
sessions/presentation/gruss.

[Gue16] Shay Gueron. “A Memory Encryption Engine Suitable for General
Purpose Processors.” In: ePrint 2016/204 (2016). url: http://
eprint.iacr.org/2016/204.

[Gül+15] Berk Gülmezoglu, Mehmet Sinan Inci, Gorka Irazoqui Apecechea,
Thomas Eisenbarth, and Berk Sunar. “A Faster and More Realistic
Flush+Reload Attack on AES.” In: Constructive Side-Channel
Analysis and Secure Design – COSADE. 2015, pp. 111–126. doi:
10.1007/978-3-319-21476-4_8.

[Gut+01] Matthew R. Guthaus, Jeffrey S. Ringenberg, Dan Ernst, Todd
M. Austin, Trevor Mudge, and Richard B. Brown. “MiBench: A
free, commercially representative embedded benchmark suite.” In:
Workshop on Workload Characterization – WWC. 2001. doi: 10.
1109/WWC.2001.990739.

[Hal+08] J. Alex Halderman, Seth D. Schoen, Nadia Heninger, William
Clarkson, William Paul, Joseph A. Calandrino, Ariel J. Feldman,
Jacob Appelbaum, and Edward W. Felten. “Lest We Remember:
Cold Boot Attacks on Encryption Keys.” In: USENIX Security
Symposium. 2008, pp. 45–60. url: http://www.usenix.org/events/
sec08/tech/full_papers/halderman/halderman.pdf.

[Han+12] Jun Han, Emmanuel Owusu, Le T. Nguyen, Adrian Perrig, and
Joy Zhang. “ACComplice: Location inference using accelerometers
on smartphones.” In: International Conference on Communication
Systems and Networks – COMSNETS. 2012, pp. 1–9. doi: 10.1109/
COMSNETS.2012.6151305.

[Hoe+13] Matthew Hoekstra, Reshma Lal, Pradeep Pappachan, Vinay Phe-
gade, and Juan del Cuvillo. “Using innovative instructions to create
trustworthy software solutions.” In: International Symposium on
Computer Architecture – ISCA. 2013, p. 11. doi: 10.1145/2487726.
2488370.

[Hu+16] Hong Hu, Shweta Shinde, Sendroiu Adrian, Zheng Leong Chua,
Prateek Saxena, and Zhenkai Liang. “Data-Oriented Programming:
On the Expressiveness of Non-control Data Attacks.” In: IEEE

https://doi.org/10.1109/SP.2018.00031
https://www.usenix.org/conference/usenixsecurity15/technical-sessions/presentation/gruss
https://www.usenix.org/conference/usenixsecurity15/technical-sessions/presentation/gruss
http://eprint.iacr.org/2016/204
http://eprint.iacr.org/2016/204
https://doi.org/10.1007/978-3-319-21476-4_8
https://doi.org/10.1109/WWC.2001.990739
https://doi.org/10.1109/WWC.2001.990739
http://www.usenix.org/events/sec08/tech/full_papers/halderman/halderman.pdf
http://www.usenix.org/events/sec08/tech/full_papers/halderman/halderman.pdf
https://doi.org/10.1109/COMSNETS.2012.6151305
https://doi.org/10.1109/COMSNETS.2012.6151305
https://doi.org/10.1145/2487726.2488370
https://doi.org/10.1145/2487726.2488370

Bibliography 148

Symposium on Security and Privacy – S&P. 2016, pp. 969–986. doi:
10.1109/SP.2016.62.

[HWH13] Ralf Hund, Carsten Willems, and Thorsten Holz. “Practical Tim-
ing Side Channel Attacks against Kernel Space ASLR.” In: IEEE
Symposium on Security and Privacy – S&P. 2013, pp. 191–205. doi:
10.1109/SP.2013.23.

[IES16] Gorka Irazoqui, Thomas Eisenbarth, and Berk Sunar. “Cross Pro-
cessor Cache Attacks.” In: Conference on Computer and Communi-
cations Security – CCS. 2016, pp. 353–364. doi: 10.1145/2897845.
2897867.

[Inc+16] Mehmet Sinan Inci, Berk Gülmezoglu, Gorka Irazoqui, Thomas
Eisenbarth, and Berk Sunar. “Cache Attacks Enable Bulk Key
Recovery on the Cloud.” In: Cryptographic Hardware and Embedded
Systems – CHES. 2016, pp. 368–388. doi: 10.1007/978- 3- 662-
53140-2_18.

[Inc16] Dyn Inc. Update Regarding DDoS Event Against Dyn Managed DNS
on October 21, 2016. Oct. 29, 2016. url: https://www.dynstatus.
com/incidents/5r9mppc1kb77 (visited on 01/07/2020).

[Int] Intel Corporation. Pin - A Dynamic Binary Instrumentation Tool.
url: https://software.intel.com/en-us/articles/pin-a-dynamic-
binary-instrumentation-tool (visited on 12/13/2019).

[Ira+17] Gorka Irazoqui, Kai Cong, Xiaofei Guo, Hareesh Khattri, Arun
K. Kanuparthi, Thomas Eisenbarth, and Berk Sunar. “Did we
learn from LLC Side Channel Attacks? A Cache Leakage Detection
Tool for Crypto Libraries.” In: arXiv abs/1709.01552 (2017). url:
http://arxiv.org/abs/1709.01552.

[Jan+17] Yeongjin Jang, Jae-Hyuk Lee, Sangho Lee, and Taesoo Kim. “SGX-
Bomb: Locking Down the Processor via Rowhammer Attack.”
In: Workshop on System Software for Trusted Execution – Sys-
TEX@SOSP. 2017, 5:1–5:6. doi: 10.1145/3152701.3152709.

[JLK16] Yeongjin Jang, Sangho Lee, and Taesoo Kim. “Breaking Kernel
Address Space Layout Randomization with Intel TSX.” In: Con-
ference on Computer and Communications Security – CCS. 2016,
pp. 380–392. doi: 10.1145/2976749.2978321.

[JT12] Marc Joye and Michael Tunstall, eds. Fault Analysis in Cryptography.
Information Security and Cryptography. Springer, 2012. isbn: 978-
3-642-29655-0. doi: 10.1007/978-3-642-29656-7.

[Ken+19] Zijo Kenjar, Tommaso Frassetto, David Gens, Michael Franz, and
Ahmad-Reza Sadeghi. “V0LTpwn: Attacking x86 Processor Integrity
from Software.” In: arXiv abs/1912.04870 (2019). url: http://
arxiv.org/abs/1912.04870.

https://doi.org/10.1109/SP.2016.62
https://doi.org/10.1109/SP.2013.23
https://doi.org/10.1145/2897845.2897867
https://doi.org/10.1145/2897845.2897867
https://doi.org/10.1007/978-3-662-53140-2_18
https://doi.org/10.1007/978-3-662-53140-2_18
https://www.dynstatus.com/incidents/5r9mppc1kb77
https://www.dynstatus.com/incidents/5r9mppc1kb77
https://software.intel.com/en-us/articles/pin-a-dynamic-binary-instrumentation-tool
https://software.intel.com/en-us/articles/pin-a-dynamic-binary-instrumentation-tool
http://arxiv.org/abs/1709.01552
https://doi.org/10.1145/3152701.3152709
https://doi.org/10.1145/2976749.2978321
https://doi.org/10.1007/978-3-642-29656-7
http://arxiv.org/abs/1912.04870
http://arxiv.org/abs/1912.04870

Bibliography 149

[KH14] Thomas Korak and Michael Hoefler. “On the Effects of Clock and
Power Supply Tampering on Two Microcontroller Platforms.” In:
Fault Diagnosis and Tolerance in Cryptography – FDTC. 2014,
pp. 8–17. doi: 10.1109/FDTC.2014.11.

[Kim+14] Yoongu Kim, Ross Daly, Jeremie Kim, Chris Fallin, Ji-Hye Lee,
Donghyuk Lee, Chris Wilkerson, Konrad Lai, and Onur Mutlu.
“Flipping bits in memory without accessing them: An experimental
study of DRAM disturbance errors.” In: International Symposium
on Computer Architecture – ISCA. 2014, pp. 361–372. doi: 10.1109/
ISCA.2014.6853210.

[KJJ99] Paul C. Kocher, Joshua Jaffe, and Benjamin Jun. “Differential
Power Analysis.” In: Advances in Cryptology – CRYPTO. 1999,
pp. 388–397. doi: 10.1007/3-540-48405-1_25.

[KMO12] Boris Köpf, Laurent Mauborgne, and Martín Ochoa. “Automatic
Quantification of Cache Side-Channels.” In: Computer Aided Verifi-
cation – CAV. 2012, pp. 564–580. doi: 10.1007/978-3-642-31424-
7_40.

[KNQ15] Dae-Hyun Kim, Prashant J. Nair, and Moinuddin K. Qureshi.
“Architectural Support for Mitigating Row Hammering in DRAM
Memories.” In: Computer Architecture Letters 14 (2015), pp. 9–12.
doi: 10.1109/LCA.2014.2332177.

[Koc+19] Paul Kocher et al. “Spectre Attacks: Exploiting Speculative Execu-
tion.” In: IEEE Symposium on Security and Privacy – S&P. 2019,
pp. 1–19. doi: 10.1109/SP.2019.00002.

[Koc96] Paul C. Kocher. “Timing Attacks on Implementations of Diffie-
Hellman, RSA, DSS, and Other Systems.” In: Advances in Cryptol-
ogy – CRYPTO. 1996, pp. 104–113. doi: 10.1007/3-540-68697-5_9.

[Kön08] Robert Könighofer. “A Fast and Cache-Timing Resistant Imple-
mentation of the AES.” In: Topics in Cryptology – CT-RSA. 2008,
pp. 187–202. doi: 10.1007/978-3-540-79263-5_12.

[KPW16] David Kaplan, Jeremy Powell, and Tom Woller. AMD Memory
Encryption. Apr. 21, 2016. url: http://developer.amd.com/wo
rdpress/media/2013/12/AMD_Memory_Encryption_Whitepaper_v7-
Public.pdf (visited on 12/13/2019).

[KS09] Emilia Käsper and Peter Schwabe. “Faster and Timing-Attack
Resistant AES-GCM.” In: Cryptographic Hardware and Embedded
Systems – CHES. 2009, pp. 1–17. doi: 10.1007/978-3-642-04138-
9_1.

[KSV13] Dusko Karaklajic, Jörn-Marc Schmidt, and Ingrid Verbauwhede.
“Hardware Designer’s Guide to Fault Attacks.” In: IEEE Trans.
VLSI Syst. 21 (2013), pp. 2295–2306. doi: 10.1109/TVLSI.2012.
2231707.

https://doi.org/10.1109/FDTC.2014.11
https://doi.org/10.1109/ISCA.2014.6853210
https://doi.org/10.1109/ISCA.2014.6853210
https://doi.org/10.1007/3-540-48405-1_25
https://doi.org/10.1007/978-3-642-31424-7_40
https://doi.org/10.1007/978-3-642-31424-7_40
https://doi.org/10.1109/LCA.2014.2332177
https://doi.org/10.1109/SP.2019.00002
https://doi.org/10.1007/3-540-68697-5_9
https://doi.org/10.1007/978-3-540-79263-5_12
http://developer.amd.com/wordpress/media/2013/12/AMD_Memory_Encryption_Whitepaper_v7-Public.pdf
http://developer.amd.com/wordpress/media/2013/12/AMD_Memory_Encryption_Whitepaper_v7-Public.pdf
http://developer.amd.com/wordpress/media/2013/12/AMD_Memory_Encryption_Whitepaper_v7-Public.pdf
https://doi.org/10.1007/978-3-642-04138-9_1
https://doi.org/10.1007/978-3-642-04138-9_1
https://doi.org/10.1109/TVLSI.2012.2231707
https://doi.org/10.1109/TVLSI.2012.2231707

Bibliography 150

[Kuz+14] Volodymyr Kuznetsov, Laszlo Szekeres, Mathias Payer, George
Candea, R. Sekar, and Dawn Song. “Code-Pointer Integrity.” In:
USENIX Symposium on Operating Systems Design and Implemen-
tation – OSDI. 2014, pp. 147–163. url: https://www.usenix.org/
conference/osdi14/technical-sessions/presentation/kuznetsov.

[Lee+17] Jae-Hyuk Lee, Jin Soo Jang, Yeongjin Jang, Nohyun Kwak, Yeseul
Choi, Changho Choi, Taesoo Kim, Marcus Peinado, and Brent
ByungHoon Kang. “Hacking in Darkness: Return-oriented Program-
ming against Secure Enclaves.” In: USENIX Security Symposium.
2017, pp. 523–539. url: https://www.usenix.org/conference/
usenixsecurity17/technical-sessions/presentation/lee-jaehyuk.

[LHB14] Jean-François Lalande, Karine Heydemann, and Pascal Berthomé.
“Software Countermeasures for Control Flow Integrity of Smart
Card C Codes.” In: European Symposium on Research in Computer
Security – ESORICS. 2014, pp. 200–218. doi: 10.1007/978-3-319-
11212-1_12.

[Lip+16] Moritz Lipp, Daniel Gruss, Raphael Spreitzer, Clémentine Maurice,
and Stefan Mangard. “ARMageddon: Cache Attacks on Mobile
Devices.” In: USENIX Security Symposium. 2016, pp. 549–564. url:
https://www.usenix.org/conference/usenixsecurity16/technical-
sessions/presentation/lipp.

[Lip+18a] Moritz Lipp, Misiker Tadesse Aga, Michael Schwarz, Daniel Gruss,
Clémentine Maurice, Lukas Raab, and Lukas Lamster. “Nethammer:
Inducing Rowhammer Faults through Network Requests.” In: arXiv
abs/1805.04956 (2018). url: http://arxiv.org/abs/1805.04956.

[Lip+18b] Moritz Lipp et al. “Meltdown: Reading Kernel Memory from User
Space.” In: USENIX Security Symposium. 2018, pp. 973–990. url:
https://www.usenix.org/conference/usenixsecurity18/presentati
on/lipp.

[Liu+15] Fangfei Liu, Yuval Yarom, Qian Ge, Gernot Heiser, and Ruby B.
Lee. “Last-Level Cache Side-Channel Attacks are Practical.” In:
IEEE Symposium on Security and Privacy – S&P. 2015, pp. 605–
622. doi: 10.1109/SP.2015.43.

[Lou+19] Xiaoxuan Lou, Fan Zhang, Zheng Leong Chua, Zhenkai Liang,
Yueqiang Cheng, and Yajin Zhou. “Understanding Rowhammer
Attacks through the Lens of a Unified Reference Framework.” In:
arXiv abs/1901.03538 (2019). url: http://arxiv.org/abs/1901.
03538.

[Mae+18] Pieter Maene, Johannes Götzfried, Ruan de Clercq, Tilo Müller, Fe-
lix C. Freiling, and Ingrid Verbauwhede. “Hardware-Based Trusted
Computing Architectures for Isolation and Attestation.” In: IEEE
Trans. Computers 67 (2018), pp. 361–374. doi: 10.1109/TC.2017.
2647955.

https://www.usenix.org/conference/osdi14/technical-sessions/presentation/kuznetsov
https://www.usenix.org/conference/osdi14/technical-sessions/presentation/kuznetsov
https://www.usenix.org/conference/usenixsecurity17/technical-sessions/presentation/lee-jaehyuk
https://www.usenix.org/conference/usenixsecurity17/technical-sessions/presentation/lee-jaehyuk
https://doi.org/10.1007/978-3-319-11212-1_12
https://doi.org/10.1007/978-3-319-11212-1_12
https://www.usenix.org/conference/usenixsecurity16/technical-sessions/presentation/lipp
https://www.usenix.org/conference/usenixsecurity16/technical-sessions/presentation/lipp
http://arxiv.org/abs/1805.04956
https://www.usenix.org/conference/usenixsecurity18/presentation/lipp
https://www.usenix.org/conference/usenixsecurity18/presentation/lipp
https://doi.org/10.1109/SP.2015.43
http://arxiv.org/abs/1901.03538
http://arxiv.org/abs/1901.03538
https://doi.org/10.1109/TC.2017.2647955
https://doi.org/10.1109/TC.2017.2647955

Bibliography 151

[Mau+15a] Clémentine Maurice, Christoph Neumann, Olivier Heen, and Au-
rélien Francillon. “C5: Cross-Cores Cache Covert Channel.” In:
Detection of Intrusions and Malware & Vulnerability Assessment –
DIMVA. 2015, pp. 46–64. doi: 10.1007/978-3-319-20550-2_3.

[Mau+15b] Clémentine Maurice, Nicolas Le Scouarnec, Christoph Neumann,
Olivier Heen, and Aurélien Francillon. “Reverse Engineering Intel
Last-Level Cache Complex Addressing Using Performance Coun-
ters.” In: Recent Advances in Intrusion Detection – RAID. 2015,
pp. 48–65. doi: 10.1007/978-3-319-26362-5_3.

[Mau+17] Clémentine Maurice, Manuel Weber, Michael Schwarz, Lukas Giner,
Daniel Gruss, Carlo Alberto Boano, Stefan Mangard, and Kay
Römer. “Hello from the Other Side: SSH over Robust Cache Covert
Channels in the Cloud.” In: Network and Distributed System Security
Symposium – NDSS. 2017. url: https : / / www . ndss - symposium .
org/ndss2017/ndss-2017-programme/hello-other-side-ssh-over-
robust-cache-covert-channels-cloud/.

[McK+13] Frank McKeen, Ilya Alexandrovich, Alex Berenzon, Carlos V. Rozas,
Hisham Shafi, Vedvyas Shanbhogue, and Uday R. Savagaonkar.
“Innovative instructions and software model for isolated execution.”
In: International Symposium on Computer Architecture – ISCA.
2013, p. 10. doi: 10.1145/2487726.2488368.

[Mic] Microsoft. Bug Bounty Program. url: https://www.microsoft.com/
en-us/msrc/bounty (visited on 01/07/2020).

[MMS01] David May, Henk L. Muller, and Nigel P. Smart. “Random Register
Renaming to Foil DPA.” In: Cryptographic Hardware and Embedded
Systems – CHES. 2001, pp. 28–38. doi: 10.1007/3-540-44709-1_4.

[MOP07] Stefan Mangard, Elisabeth Oswald, and Thomas Popp. Power
analysis attacks - revealing the secrets of smart cards. Springer,
2007. isbn: 978-0-387-30857-9.

[Mor+15] Pawel Morawiecki, Kris Gaj, Ekawat Homsirikamol, Krystian Ma-
tusiewicz, Josef Pieprzyk, Marcin Rogawski, Marian Srebrny, and
Marcin Wojcik. ICEPOLE v2. Aug. 24, 2015. url: https://compet
itions.cr.yp.to/round2/icepolev2.pdf (visited on 12/11/2019).

[MRV15] Bart Mennink, Reza Reyhanitabar, and Damian Vizár. “Security of
Full-State Keyed Sponge and Duplex: Applications to Authenticated
Encryption.” In: Advances in Cryptology – ASIACRYPT. 2015,
pp. 465–489. doi: 10.1007/978-3-662-48800-3_19.

[MS96] Larry W. McVoy and Carl Staelin. “lmbench: Portable Tools for
Performance Analysis.” In: USENIX Annual Technical Conference.
1996, pp. 279–294.

https://doi.org/10.1007/978-3-319-20550-2_3
https://doi.org/10.1007/978-3-319-26362-5_3
https://www.ndss-symposium.org/ndss2017/ndss-2017-programme/hello-other-side-ssh-over-robust-cache-covert-channels-cloud/
https://www.ndss-symposium.org/ndss2017/ndss-2017-programme/hello-other-side-ssh-over-robust-cache-covert-channels-cloud/
https://www.ndss-symposium.org/ndss2017/ndss-2017-programme/hello-other-side-ssh-over-robust-cache-covert-channels-cloud/
https://doi.org/10.1145/2487726.2488368
https://www.microsoft.com/en-us/msrc/bounty
https://www.microsoft.com/en-us/msrc/bounty
https://doi.org/10.1007/3-540-44709-1_4
https://competitions.cr.yp.to/round2/icepolev2.pdf
https://competitions.cr.yp.to/round2/icepolev2.pdf
https://doi.org/10.1007/978-3-662-48800-3_19

Bibliography 152

[Mur+20] Kit Murdock, David Oswald, Flavio D. Garcia, Jo Van Bulck,
Daniel Gruss, and Frank Piessens. “Plundervolt: Software-based
Fault Injection Attacks against Intel SGX.” In: IEEE Symposium on
Security and Privacy – S&P. 2020. url: https://www.plundervolt.
com/doc/plundervolt.pdf.

[MWK17] Heiko Mantel, Alexandra Weber, and Boris Köpf. “A Systematic
Study of Cache Side Channels Across AES Implementations.” In:
Engineering Secure Software and Systems – ESSoS. 2017, pp. 213–
230. doi: 10.1007/978-3-319-62105-0_14.

[Nag+09] Santosh Nagarakatte, Jianzhou Zhao, Milo M. K. Martin, and
Steve Zdancewic. “SoftBound: highly compatible and complete
spatial memory safety for c.” In: Programming Language Design
and Implementation – PLDI. 2009, pp. 245–258. doi: 10.1145/
1542476.1542504.

[Nag+10] Santosh Nagarakatte, Jianzhou Zhao, Milo M. K. Martin, and Steve
Zdancewic. “CETS: compiler enforced temporal safety for C.” In:
International Symposium on Memory Management – ISMM. 2010,
pp. 31–40. doi: 10.1145/1806651.1806657.

[Nam82] Masood Namjoo. “Techniques for Concurrent Testing of VLSI Pro-
cessor Operation.” In: International Test Conference – ITC. 1982,
pp. 461–468.

[Ner01] Nergal. The advanced return-into-lib(c) exploits: PaX case study.
Dec. 28, 2001. url: http://phrack.org/issues/58/4.html (visited
on 01/07/2020).

[Noo+13] Job Noorman, Pieter Agten, Wilfried Daniels, Raoul Strackx, An-
thony Van Herrewege, Christophe Huygens, Bart Preneel, Ingrid
Verbauwhede, and Frank Piessens. “Sancus: Low-cost Trustwor-
thy Extensible Networked Devices with a Zero-software Trusted
Computing Base.” In: USENIX Security Symposium. 2013, pp. 479–
494. url: https://www.usenix.org/conference/usenixsecurity13/
technical-sessions/presentation/noorman.

[Off18] United States Government Accountability Office. Actions Taken by
Equifax and Federal Agencies in Response to the 2017 Breach. Aug.
2018. url: https://www.warren.senate.gov/imo/media/doc/2018.
09.06%20GAO%20Equifax%20report.pdf (visited on 01/28/2020).

[Ole+17] Oleksii Oleksenko, Dmitrii Kuvaiskii, Pramod Bhatotia, Pascal
Felber, and Christof Fetzer. “Intel MPX Explained: An Empirical
Study of Intel MPX and Software-based Bounds Checking Ap-
proaches.” In: arXiv abs/1702.00719 (2017). url: http://arxiv.
org/abs/1702.00719.

https://www.plundervolt.com/doc/plundervolt.pdf
https://www.plundervolt.com/doc/plundervolt.pdf
https://doi.org/10.1007/978-3-319-62105-0_14
https://doi.org/10.1145/1542476.1542504
https://doi.org/10.1145/1542476.1542504
https://doi.org/10.1145/1806651.1806657
http://phrack.org/issues/58/4.html
https://www.usenix.org/conference/usenixsecurity13/technical-sessions/presentation/noorman
https://www.usenix.org/conference/usenixsecurity13/technical-sessions/presentation/noorman
https://www.warren.senate.gov/imo/media/doc/2018.09.06%20GAO%20Equifax%20report.pdf
https://www.warren.senate.gov/imo/media/doc/2018.09.06%20GAO%20Equifax%20report.pdf
http://arxiv.org/abs/1702.00719
http://arxiv.org/abs/1702.00719

Bibliography 153

[Ore+15] Yossef Oren, Vasileios P. Kemerlis, Simha Sethumadhavan, and
Angelos D. Keromytis. “The Spy in the Sandbox: Practical Cache
Attacks in JavaScript and their Implications.” In: Conference on
Computer and Communications Security – CCS. 2015, pp. 1406–
1418. doi: 10.1145/2810103.2813708.

[OST06] Dag Arne Osvik, Adi Shamir, and Eran Tromer. “Cache Attacks
and Countermeasures: The Case of AES.” In: Topics in Cryptology
– CT-RSA. 2006, pp. 1–20. doi: 10.1007/11605805_1.

[Pag02] Dan Page. “Theoretical Use of Cache Memory as a Cryptanalytic
Side-Channel.” In: ePrint 2002/169 (2002). url: http://eprint.
iacr.org/2002/169.

[Pag05] Dan Page. “Partitioned Cache Architecture as a Side-Channel
Defence Mechanism.” In: ePrint 2005/280 (2005). url: http://
eprint.iacr.org/2005/280.

[PaX01] PaX Team. PaX Address Space Layout Randomization (ASLR).
2001. url: http://pax.grsecurity.net/docs/aslr.txt (visited on
12/11/2019).

[Per05] Colin Percival. “Cache missing for fun and profit.” In: BSDCan.
2005. url: https://papers.freebsd.org/2005/cperciva- cache_
missing.files/cperciva-cache_missing-paper.pdf.

[Pic14] Sony Pictures. Letter to Employees. Nov. 24, 2014. url: http://web.
archive.org/web/20150921225520/http://www.sonypictures.com/
corp/notification/current/Non- US_and_Non- Canada_11515.pdf
(visited on 01/07/2020).

[PV19] Antoon Purnal and Ingrid Verbauwhede. “Advanced profiling for
probabilistic Prime+Probe attacks and covert channels in Scatter-
Cache.” In: arXiv abs/1908.03383 (2019). url: http://arxiv.org/
abs/1908.03383.

[Qiu+19a] Pengfei Qiu, Dongsheng Wang, Yongqiang Lyu, and Gang Qu.
“VoltJockey: Breaching TrustZone by Software-Controlled Voltage
Manipulation over Multi-core Frequencies.” In: Conference on Com-
puter and Communications Security – CCS. 2019, pp. 195–209. doi:
10.1145/3319535.3354201.

[Qiu+19b] Pengfei Qiu, Dongsheng Wang, Yongqiang Lyu, and Gang Qu.
“VoltJockey: Breaking SGX by Software-Controlled Voltage-Induced
Hardware Faults.” In: Asian Hardware Oriented Security and Trust
Symposium – AsianHOST. 2019. url: https://voltjockey.com/
flies/paper/2.pdf.

[Qur+07] Moinuddin K. Qureshi, Aamer Jaleel, Yale N. Patt, Simon C. Steely
Jr., and Joel S. Emer. “Adaptive insertion policies for high perfor-
mance caching.” In: International Symposium on Computer Archi-
tecture – ISCA. 2007, pp. 381–391. doi: 10.1145/1250662.1250709.

https://doi.org/10.1145/2810103.2813708
https://doi.org/10.1007/11605805_1
http://eprint.iacr.org/2002/169
http://eprint.iacr.org/2002/169
http://eprint.iacr.org/2005/280
http://eprint.iacr.org/2005/280
http://pax.grsecurity.net/docs/aslr.txt
https://papers.freebsd.org/2005/cperciva-cache_missing.files/cperciva-cache_missing-paper.pdf
https://papers.freebsd.org/2005/cperciva-cache_missing.files/cperciva-cache_missing-paper.pdf
http://web.archive.org/web/20150921225520/http://www.sonypictures.com/corp/notification/current/Non-US_and_Non-Canada_11515.pdf
http://web.archive.org/web/20150921225520/http://www.sonypictures.com/corp/notification/current/Non-US_and_Non-Canada_11515.pdf
http://web.archive.org/web/20150921225520/http://www.sonypictures.com/corp/notification/current/Non-US_and_Non-Canada_11515.pdf
http://arxiv.org/abs/1908.03383
http://arxiv.org/abs/1908.03383
https://doi.org/10.1145/3319535.3354201
https://voltjockey.com/flies/paper/2.pdf
https://voltjockey.com/flies/paper/2.pdf
https://doi.org/10.1145/1250662.1250709

Bibliography 154

[Qur18] Moinuddin K. Qureshi. “CEASER: Mitigating Conflict-Based Cache
Attacks via Encrypted-Address and Remapping.” In: IEEE/ACM
International Symposium on Microarchitecture – MICRO. 2018,
pp. 775–787. doi: 10.1109/MICRO.2018.00068.

[Qur19] Moinuddin K. Qureshi. “New attacks and defense for encrypted-
address cache.” In: International Symposium on Computer Archi-
tecture – ISCA. 2019, pp. 360–371. doi: 10.1145/3307650.3322246.

[Raj+09] Himanshu Raj, Ripal Nathuji, Abhishek Singh, and Paul England.
“Resource management for isolation enhanced cloud services.” In:
Cloud Computing Security Workshop – CCSW. 2009, pp. 77–84.
doi: 10.1145/1655008.1655019.

[RCS02] Francisco Rodríguez, José Carlos Campelo, and Juan José Serrano.
“A Watchdog Processor Architecture with Minimal Performance
Overhead.” In: Computer Safety, Reliability and Security – SAFE-
COMP. 2002, pp. 261–272. doi: 10.1007/3-540-45732-1_26.

[Ris+09] Thomas Ristenpart, Eran Tromer, Hovav Shacham, and Stefan
Savage. “Hey, you, get off of my cloud: exploring information leakage
in third-party compute clouds.” In: Conference on Computer and
Communications Security – CCS. 2009, pp. 199–212. doi: 10.1145/
1653662.1653687.

[Rog+07] Brian Rogers, Siddhartha Chhabra, Milos Prvulovic, and Yan Soli-
hin. “Using Address Independent Seed Encryption and Bonsai
Merkle Trees to Make Secure Processors OS- and Performance-
Friendly.” In: IEEE/ACM International Symposium on Microarchi-
tecture – MICRO. 2007, pp. 183–196. doi: 10.1109/MICRO.2007.16.

[Rog04] Phillip Rogaway. “Efficient Instantiations of Tweakable Blockciphers
and Refinements to Modes OCB and PMAC.” In: Advances in
Cryptology – ASIACRYPT. 2004, pp. 16–31. doi: 10.1007/978-3-
540-30539-2_2.

[Roo19] Marriott News Room. Marriott Provides Update on Starwood
Database Security Incident. Jan. 4, 2019. url: https : / / news .
marriott.com/2019/01/marriott- provides- update- on- starwood-
database-security-incident/ (visited on 01/28/2020).

[RS05] Francisco Rodríguez and Juan José Serrano. “Control Flow Error
Checking with ISIS.” In: Embedded Software and Systems – ICESS.
2005, pp. 659–670. doi: 10.1007/11599555_63.

[RSD06] Chester Rebeiro, A. David Selvakumar, and A. S. L. Devi. “Bitslice
Implementation of AES.” In: Cryptology and Network Security –
CANS. 2006, pp. 203–212. doi: 10.1007/11935070_14.

[SA02] Sergei P. Skorobogatov and Ross J. Anderson. “Optical Fault Induc-
tion Attacks.” In: Cryptographic Hardware and Embedded Systems –
CHES. 2002, pp. 2–12. doi: 10.1007/3-540-36400-5_2.

https://doi.org/10.1109/MICRO.2018.00068
https://doi.org/10.1145/3307650.3322246
https://doi.org/10.1145/1655008.1655019
https://doi.org/10.1007/3-540-45732-1_26
https://doi.org/10.1145/1653662.1653687
https://doi.org/10.1145/1653662.1653687
https://doi.org/10.1109/MICRO.2007.16
https://doi.org/10.1007/978-3-540-30539-2_2
https://doi.org/10.1007/978-3-540-30539-2_2
https://news.marriott.com/2019/01/marriott-provides-update-on-starwood-database-security-incident/
https://news.marriott.com/2019/01/marriott-provides-update-on-starwood-database-security-incident/
https://news.marriott.com/2019/01/marriott-provides-update-on-starwood-database-security-incident/
https://doi.org/10.1007/11599555_63
https://doi.org/10.1007/11935070_14
https://doi.org/10.1007/3-540-36400-5_2

Bibliography 155

[Saa16] Markku-Juhani O. Saarinen. TinySHA3 Source Repository. 2016.
url: https : / / github . com / mjosaarinen / tiny _ sha3 (visited on
12/11/2019).

[Sam+02] David Samyde, Sergei P. Skorobogatov, Ross J. Anderson, and Jean-
Jacques Quisquater. “On a New Way to Read Data from Memory.”
In: Security in Storage Workshop – SISW. 2002, pp. 65–69. doi:
10.1109/SISW.2002.1183512.

[San15] Lester Sanders. XAPP1175: Secure Boot of Zynq-7000 All Pro-
grammable SoC. v2.0. Xilinx Inc. Apr. 3, 2015. url: https://www.
xilinx.com/support/documentation/application_notes/xapp1175_
zynq_secure_boot.pdf.

[SB15] Markku-Juhani O. Saarinen and Billy B. Brumley. STRIBOBr2:
"WHIRLBOB". Aug. 28, 2015. url: https://competitions.cr.yp.
to/round2/stribobr2.pdf (visited on 12/11/2019).

[Sch+10] Ute Schiffel, André Schmitt, Martin Süßkraut, and Christof Fetzer.
“ANB- and ANBDmem-Encoding: Detecting Hardware Errors in
Software.” In: Computer Safety, Reliability and Security – SAFE-
COMP. 2010, pp. 169–182. doi: 10.1007/978-3-642-15651-9_13.

[Sch+15] Felix Schuster, Thomas Tendyck, Christopher Liebchen, Lucas Davi,
Ahmad-Reza Sadeghi, and Thorsten Holz. “Counterfeit Object-
oriented Programming: On the Difficulty of Preventing Code Reuse
Attacks in C++ Applications.” In: IEEE Symposium on Security
and Privacy – S&P. 2015, pp. 745–762. doi: 10.1109/SP.2015.51.

[Sch+17] Michael Schwarz, Samuel Weiser, Daniel Gruss, Clémentine Maurice,
and Stefan Mangard. “Malware Guard Extension: Using SGX to
Conceal Cache Attacks.” In: Detection of Intrusions and Malware &
Vulnerability Assessment – DIMVA. 2017, pp. 3–24. doi: 10.1007/
978-3-319-60876-1_1.

[Sch+18a] David Schaffenrath, Markus Wegmann, Antonio Pullini, Davide
Schiavone, Beat Muheim, Stefan Mangard, and Mario Werner. The
IIS Chip Gallery: Patronus. Apr. 3, 2018. url: http://asic.ethz.
ch/2016/Patronus.html (visited on 02/07/2020).

[Sch+18c] Michael Schwarz, Moritz Lipp, Daniel Gruss, Samuel Weiser,
Clémentine Maurice, Raphael Spreitzer, and Stefan Mangard.
“KeyDrown: Eliminating Software-Based Keystroke Timing Side-
Channel Attacks.” In: Network and Distributed System Security
Symposium – NDSS. 2018. url: http://arxiv.org/abs/1706.06381.

[Sch+18d] Michael Schwarz, Martin Schwarzl, Moritz Lipp, and Daniel Gruss.
“NetSpectre: Read Arbitrary Memory over Network.” In: arXiv
abs/1807.10535 (2018). url: http://arxiv.org/abs/1807.10535.

https://github.com/mjosaarinen/tiny_sha3
https://doi.org/10.1109/SISW.2002.1183512
https://www.xilinx.com/support/documentation/application_notes/xapp1175_zynq_secure_boot.pdf
https://www.xilinx.com/support/documentation/application_notes/xapp1175_zynq_secure_boot.pdf
https://www.xilinx.com/support/documentation/application_notes/xapp1175_zynq_secure_boot.pdf
https://competitions.cr.yp.to/round2/stribobr2.pdf
https://competitions.cr.yp.to/round2/stribobr2.pdf
https://doi.org/10.1007/978-3-642-15651-9_13
https://doi.org/10.1109/SP.2015.51
https://doi.org/10.1007/978-3-319-60876-1_1
https://doi.org/10.1007/978-3-319-60876-1_1
http://asic.ethz.ch/2016/Patronus.html
http://asic.ethz.ch/2016/Patronus.html
http://arxiv.org/abs/1706.06381
http://arxiv.org/abs/1807.10535

Bibliography 156

[SD15] M. Seaborn and T. Dullien. Exploiting the DRAM rowhammer bug to
gain kernel privileges. Mar. 9, 2015. url: http://googleprojectzero.
blogspot.com/2015/03/exploiting-dram-rowhammer-bug-to-gain.
html (visited on 01/30/2020).

[Sel+15] Bodo Selmke, Stefan Brummer, Johann Heyszl, and Georg Sigl.
“Precise Laser Fault Injections into 90 nm and 45 nm SRAM-cells.”
In: Smart Card Research and Advanced Applications – CARDIS.
2015, pp. 193–205. doi: 10.1007/978-3-319-31271-2_12.

[Sez93] André Seznec. “A Case for Two-Way Skewed-Associative Caches.”
In: International Symposium on Computer Architecture – ISCA.
1993, pp. 169–178. doi: 10.1145/165123.165152.

[Sha+04] Hovav Shacham, Matthew Page, Ben Pfaff, Eu-Jin Goh, Nagendra
Modadugu, and Dan Boneh. “On the effectiveness of address-space
randomization.” In: Conference on Computer and Communications
Security – CCS. 2004, pp. 298–307. doi: 10.1145/1030083.1030124.

[Sha07] Hovav Shacham. “The geometry of innocent flesh on the bone:
return-into-libc without function calls (on the x86).” In: Conference
on Computer and Communications Security – CCS. 2007, pp. 552–
561. doi: 10.1145/1315245.1315313.

[Sil12] Vicente Silveira. An Update on LinkedIn Member Passwords
Compromised. June 6, 2012. url: https://blog.linkedin.com/
2012/06/06/linkedin-member-passwords-compromised (visited on
01/07/2020).

[SKH05] Mathias Spjuth, Martin Karlsson, and Erik Hagersten. “Skewed
caches from a low-power perspective.” In: Computing Frontiers –
CF. 2005, pp. 152–160. doi: 10.1145/1062261.1062289.

[Sko02] Sergei Skorobogatov. Low temperature data remanence in static
RAM. Tech. rep. University of Cambridge, 2002. url: https://www.
cl.cam.ac.uk/techreports/UCAM-CL-TR-536.pdf.

[Sko16] Sergei Skorobogatov. “The bumpy road towards iPhone 5c NAND
mirroring.” In: arXiv abs/1609.04327 (2016). url: http://arxiv.
org/abs/1609.04327.

[SOD05] G. Edward Suh, Charles W. O’Donnell, and Srinivas Devadas.
“AEGIS: A single-chip secure processor.” In: Inf. Sec. Techn. Report
10 (2005), pp. 63–73. doi: 10.1016/j.istr.2005.05.002.

[Sol97] Solar Designer. Getting around non-executable stack (and fix).
Aug. 10, 1997. url: http://seclists.org/bugtraq/1997/Aug/63
(visited on 01/07/2020).

[SP13] Raphael Spreitzer and Thomas Plos. “Cache-Access Pattern At-
tack on Disaligned AES T-Tables.” In: Constructive Side-Channel
Analysis and Secure Design – COSADE. 2013, pp. 200–214. doi:
10.1007/978-3-642-40026-1_13.

http://googleprojectzero.blogspot.com/2015/03/exploiting-dram-rowhammer-bug-to-gain.html
http://googleprojectzero.blogspot.com/2015/03/exploiting-dram-rowhammer-bug-to-gain.html
http://googleprojectzero.blogspot.com/2015/03/exploiting-dram-rowhammer-bug-to-gain.html
https://doi.org/10.1007/978-3-319-31271-2_12
https://doi.org/10.1145/165123.165152
https://doi.org/10.1145/1030083.1030124
https://doi.org/10.1145/1315245.1315313
https://blog.linkedin.com/2012/06/06/linkedin-member-passwords-compromised
https://blog.linkedin.com/2012/06/06/linkedin-member-passwords-compromised
https://doi.org/10.1145/1062261.1062289
https://www.cl.cam.ac.uk/techreports/UCAM-CL-TR-536.pdf
https://www.cl.cam.ac.uk/techreports/UCAM-CL-TR-536.pdf
http://arxiv.org/abs/1609.04327
http://arxiv.org/abs/1609.04327
https://doi.org/10.1016/j.istr.2005.05.002
http://seclists.org/bugtraq/1997/Aug/63
https://doi.org/10.1007/978-3-642-40026-1_13

Bibliography 157

[Spr+18] Raphael Spreitzer, Veelasha Moonsamy, Thomas Korak, and Stefan
Mangard. “Systematic Classification of Side-Channel Attacks: A
Case Study for Mobile Devices.” In: IEEE Communications Surveys
and Tutorials 20 (2018), pp. 465–488. doi: 10.1109/COMST.2017.
2779824.

[Spr14] Raphael Spreitzer. “PIN Skimming: Exploiting the Ambient-Light
Sensor in Mobile Devices.” In: Conference on Computer and Com-
munications Security – CCS. 2014, pp. 51–62. doi: 10.1145/2666620.
2666622.

[Sta] Standard Performance Evaluation Corporation. SPEC CPU 2017.
url: https://www.spec.org/cpu2017/ (visited on 12/13/2019).

[Sta10] François-Xavier Standaert. “Introduction to Side-Channel Attacks.”
In: Secure Integrated Circuits and Systems. 2010. doi: 10.1007/978-
0-387-71829-3_2.

[Sto08] SIS-WG - Security in Storage Working Group. IEEE Standard
for Cryptographic Protection of Data on Block-Oriented Storage
Devices. IEEE Std 1619-2007. 2008.

[Sun+18] Zhichuang Sun, Bo Feng, Long Lu, and Somesh Jha. “OEI: Op-
eration Execution Integrity for Embedded Devices.” In: arXiv
abs/1802.03462 (2018). url: http://arxiv.org/abs/1802.03462.

[SWG19] Michael Schwarz, Samuel Weiser, and Daniel Gruss. “Practical
Enclave Malware with Intel SGX.” In: Detection of Intrusions and
Malware & Vulnerability Assessment – DIMVA. 2019, pp. 177–196.
doi: 10.1007/978-3-030-22038-9_9.

[SY15] Yu Sasaki and Kan Yasuda. “How to Incorporate Associated Data in
Sponge-Based Authenticated Encryption.” In: Topics in Cryptology
– CT-RSA. 2015, pp. 353–370. doi: 10.1007/978-3-319-16715-2_19.

[Sze+13] Laszlo Szekeres, Mathias Payer, Tao Wei, and Dawn Song. “SoK:
Eternal War in Memory.” In: IEEE Symposium on Security and
Privacy – S&P. 2013, pp. 48–62. doi: 10.1109/SP.2013.13.

[Tat+18] Andrei Tatar, Radhesh Krishnan Konoth, Elias Athanasopoulos,
Cristiano Giuffrida, Herbert Bos, and Kaveh Razavi. “Throwham-
mer: Rowhammer Attacks over the Network and Defenses.” In:
USENIX Annual Technical Conference. 2018, pp. 213–226. url:
https://www.usenix.org/conference/atc18/presentation/tatar.

[Tri+18] David Trilla, Carles Hernández, Jaume Abella, and Francisco J.
Cazorla. “Cache side-channel attacks and time-predictability in
high-performance critical real-time systems.” In: Design Automation
Conference – DAC. 2018, 98:1–98:6. doi: 10.1145/3195970.3196003.

https://doi.org/10.1109/COMST.2017.2779824
https://doi.org/10.1109/COMST.2017.2779824
https://doi.org/10.1145/2666620.2666622
https://doi.org/10.1145/2666620.2666622
https://www.spec.org/cpu2017/
https://doi.org/10.1007/978-0-387-71829-3_2
https://doi.org/10.1007/978-0-387-71829-3_2
http://arxiv.org/abs/1802.03462
https://doi.org/10.1007/978-3-030-22038-9_9
https://doi.org/10.1007/978-3-319-16715-2_19
https://doi.org/10.1109/SP.2013.13
https://www.usenix.org/conference/atc18/presentation/tatar
https://doi.org/10.1145/3195970.3196003

Bibliography 158

[TSS17] Adrian Tang, Simha Sethumadhavan, and Salvatore J. Stolfo.
“CLKSCREW: Exposing the Perils of Security-Oblivious Energy
Management.” In: USENIX Security Symposium. 2017, pp. 1057–
1074. url: https://www.usenix.org/conference/usenixsecurity17/
technical-sessions/presentation/tang.

[Tsu+03] Yukiyasu Tsunoo, Teruo Saito, Tomoyasu Suzaki, Maki Shigeri,
and Hiroshi Miyauchi. “Cryptanalysis of DES Implemented on
Computers with Cache.” In: Cryptographic Hardware and Embedded
Systems – CHES. 2003, pp. 62–76. doi: 10.1007/978-3-540-45238-
6_6.

[WA17] Andrew Waterman and Krste Asanovic. The RISC-V Instruction
Set Manual, Volume I: User-Level ISA, Version 2.2. Tech. rep.
EECS Department, University of California, Berkeley, May 7, 2017.
url: https://content.riscv.org/wp-content/uploads/2017/05/
riscv-spec-v2.2.pdf.

[Wat+16] Andrew Waterman, Yunsup Lee, Rimas Avizienis, David A. Pat-
terson, and Krste Asanović. The RISC-V Instruction Set Manual
Volume II: Privileged Architecture Version 1.9.1. Tech. rep. EECS
Department, University of California, Berkeley, Nov. 4, 2016. url:
http://www2.eecs.berkeley.edu/Pubs/TechRpts/2016/EECS-2016-
161.pdf.

[Wei+18] Samuel Weiser, Andreas Zankl, Raphael Spreitzer, Katja Miller,
Stefan Mangard, and Georg Sigl. “DATA - Differential Address
Trace Analysis: Finding Address-based Side-Channels in Binaries.”
In: USENIX Security Symposium. 2018, pp. 603–620. url: https:
//www.usenix.org/conference/usenixsecurity18/presentation/
weiser.

[Wei+19b] Zane Weissman, Thore Tiemann, Daniel Moghimi, Evan Custo-
dio, Thomas Eisenbarth, and Berk Sunar. “JackHammer: Efficient
Rowhammer on Heterogeneous FPGA-CPU Platforms.” In: arXiv
abs/1912.11523 (2019). url: http://arxiv.org/abs/1912.11523.

[Wei+94] Mark Weiser, Brent B. Welch, Alan J. Demers, and Scott Shenker.
“Scheduling for Reduced CPU Energy.” In: USENIX Symposium
on Operating Systems Design and Implementation – OSDI. 1994,
pp. 13–23. url: http://dl.acm.org/citation.cfm?id=1267640.

[Wik] Wikipedia. iOS jailbreaking. url: https://en.wikipedia.org/wiki/
IOS_jailbreaking#History_of_tools (visited on 01/07/2020).

[Wil15] Kyle Wilkinson. XAPP1239: Using Encryption to Secure a 7 Series
FPGA Bitstream. v1.0. Xilinx Inc. Apr. 15, 2015. url: https://www.
xilinx.com/support/documentation/application_notes/xapp1239-
fpga-bitstream-encryption.pdf.

https://www.usenix.org/conference/usenixsecurity17/technical-sessions/presentation/tang
https://www.usenix.org/conference/usenixsecurity17/technical-sessions/presentation/tang
https://doi.org/10.1007/978-3-540-45238-6_6
https://doi.org/10.1007/978-3-540-45238-6_6
https://content.riscv.org/wp-content/uploads/2017/05/riscv-spec-v2.2.pdf
https://content.riscv.org/wp-content/uploads/2017/05/riscv-spec-v2.2.pdf
http://www2.eecs.berkeley.edu/Pubs/TechRpts/2016/EECS-2016-161.pdf
http://www2.eecs.berkeley.edu/Pubs/TechRpts/2016/EECS-2016-161.pdf
https://www.usenix.org/conference/usenixsecurity18/presentation/weiser
https://www.usenix.org/conference/usenixsecurity18/presentation/weiser
https://www.usenix.org/conference/usenixsecurity18/presentation/weiser
http://arxiv.org/abs/1912.11523
http://dl.acm.org/citation.cfm?id=1267640
https://en.wikipedia.org/wiki/IOS_jailbreaking#History_of_tools
https://en.wikipedia.org/wiki/IOS_jailbreaking#History_of_tools
https://www.xilinx.com/support/documentation/application_notes/xapp1239-fpga-bitstream-encryption.pdf
https://www.xilinx.com/support/documentation/application_notes/xapp1239-fpga-bitstream-encryption.pdf
https://www.xilinx.com/support/documentation/application_notes/xapp1239-fpga-bitstream-encryption.pdf

Bibliography 159

[WL07] Zhenghong Wang and Ruby B. Lee. “New cache designs for thwart-
ing software cache-based side channel attacks.” In: International
Symposium on Computer Architecture – ISCA. 2007, pp. 494–505.
doi: 10.1145/1250662.1250723.

[WL08] Zhenghong Wang and Ruby B. Lee. “A novel cache architecture with
enhanced performance and security.” In: IEEE/ACM International
Symposium on Microarchitecture – MICRO. 2008, pp. 83–93. doi:
10.1109/MICRO.2008.4771781.

[WS88] Kent D. Wilken and John Paul Shen. “Continuous Signature Moni-
toring: Efficient Concurrent-Detection of Processor Control Errors.”
In: International Test Conference – ITC. 1988, pp. 914–925. doi:
10.1109/TEST.1988.207880.

[WS90] Kent D. Wilken and John Paul Shen. “Continuous signature moni-
toring: low-cost concurrent detection of processor control errors.” In:
IEEE Trans. on CAD of Integrated Circuits and Systems 9 (1990),
pp. 629–641. doi: 10.1109/43.55193.

[WWM11] Jasper G. J. van Woudenberg, Marc F. Witteman, and Federico
Menarini. “Practical Optical Fault Injection on Secure Microcon-
trollers.” In: Fault Diagnosis and Tolerance in Cryptography – FDTC.
2011, pp. 91–99. doi: 10.1109/FDTC.2011.12.

[WXW12] Zhenyu Wu, Zhang Xu, and Haining Wang. “Whispers in the
Hyper-space: High-speed Covert Channel Attacks in the Cloud.” In:
USENIX Security Symposium. 2012, pp. 159–173. url: https://www.
usenix . org / conference / usenixsecurity12 / technical - sessions /
presentation/wu.

[WXW15] Zhenyu Wu, Zhang Xu, and Haining Wang. “Whispers in the Hyper-
Space: High-Bandwidth and Reliable Covert Channel Attacks Inside
the Cloud.” In: IEEE/ACM Trans. Netw. 23 (2015), pp. 603–615.
doi: 10.1109/TNET.2014.2304439.

[Xia+17] Yuan Xiao, Mengyuan Li, Sanchuan Chen, and Yinqian Zhang.
“STACCO: Differentially Analyzing Side-Channel Traces for Detect-
ing SSL/TLS Vulnerabilities in Secure Enclaves.” In: Conference on
Computer and Communications Security – CCS. 2017, pp. 859–874.
doi: 10.1145/3133956.3134016.

[Xu+11] Yunjing Xu, Michael Bailey, Farnam Jahanian, Kaustubh R. Joshi,
Matti A. Hiltunen, and Richard D. Schlichting. “An exploration of
L2 cache covert channels in virtualized environments.” In: Cloud
Computing Security Workshop – CCSW. 2011, pp. 29–40. doi:
10.1145/2046660.2046670.

https://doi.org/10.1145/1250662.1250723
https://doi.org/10.1109/MICRO.2008.4771781
https://doi.org/10.1109/TEST.1988.207880
https://doi.org/10.1109/43.55193
https://doi.org/10.1109/FDTC.2011.12
https://www.usenix.org/conference/usenixsecurity12/technical-sessions/presentation/wu
https://www.usenix.org/conference/usenixsecurity12/technical-sessions/presentation/wu
https://www.usenix.org/conference/usenixsecurity12/technical-sessions/presentation/wu
https://doi.org/10.1109/TNET.2014.2304439
https://doi.org/10.1145/3133956.3134016
https://doi.org/10.1145/2046660.2046670

Bibliography 160

[Yan+06] Chenyu Yan, Daniel Englender, Milos Prvulovic, Brian Rogers, and
Yan Solihin. “Improving Cost, Performance, and Security of Memory
Encryption and Authentication.” In: International Symposium on
Computer Architecture – ISCA. 2006, pp. 179–190. doi: 10.1109/
ISCA.2006.22.

[YF14] Yuval Yarom and Katrina Falkner. “FLUSH+RELOAD: A High
Resolution, Low Noise, L3 Cache Side-Channel Attack.” In: USENIX
Security Symposium. 2014, pp. 719–732. url: https://www.usenix.
org/conference/usenixsecurity14/technical-sessions/presentat
ion/yarom.

[Zei+17] Shaza Zeitouni, Ghada Dessouky, Orlando Arias, Dean Sullivan,
Ahmad Ibrahim, Yier Jin, and Ahmad-Reza Sadeghi. “ATRIUM:
Runtime attestation resilient under memory attacks.” In: Conference
on Computer-Aided Design – ICCAD. 2017, pp. 384–391. doi: 10.
1109/ICCAD.2017.8203803.

[Zha+11] Yinqian Zhang, Ari Juels, Alina Oprea, and Michael K. Reiter.
“HomeAlone: Co-residency Detection in the Cloud via Side-Channel
Analysis.” In: IEEE Symposium on Security and Privacy – S&P.
2011, pp. 313–328. doi: 10.1109/SP.2011.31.

[Zha+12] Yinqian Zhang, Ari Juels, Michael K. Reiter, and Thomas Ris-
tenpart. “Cross-VM side channels and their use to extract private
keys.” In: Conference on Computer and Communications Security –
CCS. 2012, pp. 305–316. doi: 10.1145/2382196.2382230.

[Zha+14] Yinqian Zhang, Ari Juels, Michael K. Reiter, and Thomas Ris-
tenpart. “Cross-Tenant Side-Channel Attacks in PaaS Clouds.” In:
Conference on Computer and Communications Security – CCS.
2014, pp. 990–1003. doi: 10.1145/2660267.2660356.

[ZHS16] Andreas Zankl, Johann Heyszl, and Georg Sigl. “Automated De-
tection of Instruction Cache Leaks in Modular Exponentiation
Software.” In: Smart Card Research and Advanced Applications –
CARDIS. 2016, pp. 228–244. doi: 10.1007/978-3-319-54669-8_14.

[ZS13] Mingwei Zhang and R. Sekar. “Control Flow Integrity for COTS
Binaries.” In: USENIX Security Symposium. 2013, pp. 337–352. url:
https://www.usenix.org/conference/usenixsecurity13/technical-
sessions/presentation/Zhang.

[ZXZ16] Xiaokuan Zhang, Yuan Xiao, and Yinqian Zhang. “Return-Oriented
Flush-Reload Side Channels on ARM and Their Implications for An-
droid Devices.” In: Conference on Computer and Communications
Security – CCS. 2016, pp. 858–870. doi: 10.1145/2976749.2978360.

https://doi.org/10.1109/ISCA.2006.22
https://doi.org/10.1109/ISCA.2006.22
https://www.usenix.org/conference/usenixsecurity14/technical-sessions/presentation/yarom
https://www.usenix.org/conference/usenixsecurity14/technical-sessions/presentation/yarom
https://www.usenix.org/conference/usenixsecurity14/technical-sessions/presentation/yarom
https://doi.org/10.1109/ICCAD.2017.8203803
https://doi.org/10.1109/ICCAD.2017.8203803
https://doi.org/10.1109/SP.2011.31
https://doi.org/10.1145/2382196.2382230
https://doi.org/10.1145/2660267.2660356
https://doi.org/10.1007/978-3-319-54669-8_14
https://www.usenix.org/conference/usenixsecurity13/technical-sessions/presentation/Zhang
https://www.usenix.org/conference/usenixsecurity13/technical-sessions/presentation/Zhang
https://doi.org/10.1145/2976749.2978360

Affidavit

I declare that I have authored this thesis independently, that I have not used
other than the declared sources/resources, and that I have explicitly indicated
all material which has been quoted either literally or by content from the sources
used. The text document uploaded to TUGRAZonline is identical to the present
doctoral thesis.

161

	Title Page
	Abstract
	Acknowledgements
	Table of Contents
	List of Tables
	List of Figures
	Glossary
	Introduction
	Problem Statement
	Motivation and Related Work
	Software Attacks
	Physical Attacks
	Software-controlled Physical Attacks

	Contribution and Outline

	I Providing Control-Flow Integrity and Attestation
	Protecting the Control Flow of Embedded Processors against Fault Attacks
	Control-Flow Integrity in Fault-Tolerant Computing
	Control-Flow Integrity
	Derived Signatures
	Generalized Path Signature Analysis
	Continuous-Signature Monitoring

	Control-Flow Integrity in the Setting of Fault Attacks
	Signature Function Selection
	Update Function Selection

	Prototype Implementation
	Hardware Architecture
	Source Code Modifications
	Software Modifications

	Evaluation
	Error-detection Coverage
	Error-detection Latency
	Monitor Complexity
	Memory Overhead and Processor-Performance Loss

	Conclusion

	Sponge-Based Control-Flow Protection for IoT-Devices
	Overall Concept
	Threat Model and Assumptions
	Architecture
	Authenticated Encryption and Control Flow
	Patch Handling, Placement and Calculation
	Initial State Derivation
	Interrupt Handling
	Fast Error Recovery

	Sponge Constructions for SCFP
	Constructions
	Parameter Selection

	Instantiations
	Unkeyed Permutations
	Keyed Permutations
	Discussion

	RISC-V Implementation
	Processor Architecture
	RISC-V Instruction Set Extensions to support SCFP
	Extensions of the RISC-V Privileged Architecture
	Software Toolchain

	Evaluation
	Area
	Code Size and Runtime
	Power
	Fast Error Recovery Latency

	Conclusion

	Remote Attestation and Licensing via Secure Code Execution
	Background
	Remote Attestation
	Secure Code Execution

	Remote Attestation Concept
	Threat Model and Trusted Computing Base
	Overview
	Attestation Modes
	Licensing Extension

	Implementation
	Instance
	Hardware
	Software
	Security
	Implementation Aspects

	Evaluation
	Library Characterization
	Runtime Overhead Estimation and Validation
	Memory
	Further Remarks

	Conclusion

	II Counteracting Physical Attacks on the Memory System
	Transparent Memory Encryption and Authentication
	RAM Encryption Framework
	Challenges
	Framework and Application to AXI4
	Optimizations

	Authentication Trees
	Requirements
	Functionality
	Optimizations

	Evaluation and Discussion
	Conclusion

	ScatterCache: Thwarting Cache Attacks via Cache Set Randomization
	Background
	Caches
	Cache Side-Channel Attacks
	Resilient Cache Architectures

	ScatterCache
	Targeted Properties
	Idea
	ScatterCache Design
	Processor Interaction and Software

	Security Evaluation
	Applicability of Cache Attacks
	Other Microarchitectural Attacks
	Complexity of Building Eviction Sets
	Complexity of Prime+Probe
	Challenges with Real-World Attacks
	Noise Sampling
	Further Remarks

	Performance Evaluation
	gem5 Setup
	Hardware Overhead Discussion
	gem5 Results and Discussion
	Cache Simulation and SPEC Results

	Conclusion

	Conclusion
	Outlook

	Author's Publications
	Bibliography
	Affidavit

