
Author’s Version of https://doi.org/10.1007/s13389-018-0180-2

MEAS: Memory Encryption and Authentication Secure
Against Side-Channel Attacks Using Unprotected Primitives

Thomas Unterluggauer · Mario Werner · Stefan Mangard

Abstract Memory encryption is used in many devices

to protect memory content from attackers with phys-

ical access to a device. However, many current mem-

ory encryption schemes can be broken using Differen-

tial Power Analysis (DPA). In this work, we present

Meas—the first Memory Encryption and Authentica-

tion Scheme providing security against DPA attacks.

The scheme combines ideas from fresh re-keying and au-

thentication trees by storing encryption keys in a tree

structure to thwart first-order DPA without the need

for DPA-protected cryptographic primitives. Therefore,

the design strictly limits the use of every key to en-

crypt at most two different plaintext values. Meas pre-

vents higher-order DPA without changes to the cipher

implementation by using masking of the plaintext val-

ues. Meas is applicable to all kinds of memory, e.g.,

NVM and RAM. For RAM, we give two concrete Meas

instances based on the lightweight primitives Ascon,

PRINCE, and QARMA. We implement and evaluate

both instances on a Zynq XC7Z020 FPGA showing that

Meas has memory and performance overhead compara-

ble to existing memory authentication techniques with-

out DPA protection.

Keywords side-channel attacks; DPA; memory;

encryption; authentication

B Thomas Unterluggauer
thomas.unterluggauer@iaik.tugraz.at

Mario Werner
mario.werner@iaik.tugraz.at

Stefan Mangard
stefan.mangard@iaik.tugraz.at

Institute for Applied Information Processing and
Communications, Graz University of Technology,
Inffeldgasse 16a, 8010 Graz, Austria

1 Introduction

Memory encryption is the standard technique to pro-

tect data and code against attackers with physical ac-

cess to a memory. It is widely deployed in state-of-the-

art systems, such as in iOS [2], Android [22], Mac OS

X [1], Windows [19], and Linux [26, 36]. Typical en-

cryption schemes employed in these systems are Cipher-

Block-Chaining with Encrypted Salt-Sector IV (CBC-

ESSIV) [20], Xor-Encrypt-Xor (XEX) [47], and XEX-

based Tweaked codebook mode with ciphertext Steal-

ing (XTS) [30]. These schemes successfully prevent at-

tackers from accessing memory content when the device

is shut off and the encryption key is not present on the

device, e.g., an encryped USB flash drive.

Contrary to that, in many situations in the Internet

of Things (IoT), a physical attacker is in possession

of a running device, or can turn a device on. In

these cases, the attacker can, for example, observe

and tamper with data in RAM. As a result, memory

encryption and tree-based authentication techniques,

e.g., Merkle trees [40], Parallelizable Authentication

Trees [27] (PAT) and Tamper Evident Counter [18]

(TEC) trees, are increasingly deployed to protect data

in RAM. As one prominent example, RAM encryption

and authentication was only recently adopted in

consumer products with Intel SGX [25]. Similarly,

there are efforts to encrypt RAM on AMD [32] and

ARM systems [29] as well.

However, whenever a physical attacker has access

to a running device, the attacker is also capable of per-

forming side-channel attacks. This means that the at-

tacker cannot just read and tamper with the memory,

but is also capable of measuring side-channel informa-

tion, such as the power consumption of the hardware,

during the encryption and authentication of the mem-

ory. The attacker can then exploit such side-channel

https://doi.org/10.1007/s13389-018-0180-2


2 Thomas Unterluggauer et al.

information to learn the secret key used for memory

encryption and authentication. In practice, an attacker

performing both passive, e.g., bus probing, and active,

e.g., data spoofing, attacks on the memory, is also ca-

pable of observing side-channel information, e.g., by at-

taching an osilloscope for measuring the power, dur-

ing the actual encryption or authentication process. As

such, side-channel attacks are realistic for any phys-

ical attacker when given access to a running device.

One particularly strong class of side-channel attacks is

Differential Power Analysis [34] (DPA), which allows

successful key recovery from observing the power con-

sumption during the en-/decryption of several different

data inputs. DPA attacks effectively accumulate side-

channel information about the key being used by ob-

serving multiple en-/decryptions under the same key.

However, contemporary memory encryption and

authentication schemes that protect memory against

physical attackers, e.g., [17, 25, 44, 48, 54, 55], lack the

consideration of side-channel attacks and DPA in

particular. More concretely, the security of contem-

porary schemes is build upon the assumption of a

microchip that is secure against active and passive

adversaries and which does not leak any information

about the key via side channels. However, as pointed

out before, the assumption that side-channel attacks

on microchips are infeasible is too strong. In fact, DPA

attacks were quite recently shown to pose a serious

threat to memory encryption on general-purpose

CPUs. While the DPA presented in [57] breaks many

contemporary memory encryption schemes, the prac-

tical attacks in [5, 37, 50, 57] document the feasibility

of DPA on memory encryption and authentication on

state-of-the-art systems.

In principle, there exist techniques to protect cryp-

tographic primitives against DPA attacks. For example,

an implementation can be protected by changing the

hardware such as by applying masking techniques [12,

23], which use randomization to make the side-channel

information independent from the actually processed

value. However, protecting implementations of cryp-

tographic primitives against DPA is expensive and a

tough problem in an active field of research existing for

almost two decades. The massive overheads for DPA-

protected implementations range between a factor of

four and a few hundred [6, 10, 42, 45] and would thus

render current memory encryption and authentication

schemes in latency sensitive applications impractical. In

contrast, more efficient solutions are in sight when con-

sidering side-channel protection throughout the crypto-

graphic design and looking for potential synergies.

Contribution. In this paper, we solve the problem of

protecting data in memory against physical attackers

in possession of a running device. More concretely, we

solve the stringent problem of DPA attacks on mem-

ory encryption and authentication without additional

memory overhead over conventional schemes.

We approach the topic with a detailed analysis of

the security of fresh re-keying [33, 39] as a promising

mechanism to prevent DPA on memory encryption.

While re-keying completely thwarts DPA on the

cryptographic key, our major result here is that re-

keying provides merely first-order DPA security for the

memory content itself. In particular, we show that the

read-modify-write access patterns inevitably occuring

in encrypted memory allow for profiled, higher-order

DPA attacks that leak constant plaintext data when

re-keying is applied to memory encryption.

Second, we build on our analysis and present

Meas—the first Memory Encryption and Authentica-

tion Scheme secure against DPA attacks. The scheme

is suitable for all kinds of memory including random

access memory (RAM) and non-volatile memory

(NVM). By making use of synergies between fresh

re-keying and authentication trees [18, 27, 40], Meas

simultaneously offers security against first-order DPA

and random access to all memory blocks. In more

detail, Meas uses separate keys for each memory

block that are stored in a tree structure and changed

on every write access in order to strictly limit the

use of each key to the encryption of two different

plaintexts at most. For higher-order DPA security,

Meas performs data masking by splitting the plaintext

values into shares and storing the encrypted shares in

memory. This allows to flexibly extend DPA protection

to higher orders in trade for additional memory. For

all DPA protection levels, Meas does not require

DPA-protected implementations of the cryptographic

primitives, making Meas suitable for common off-

the-shelf (COTS) systems equipped with unprotected

cryptographic accelerators. However, Meas is also

an ideal choice for constructing a DPA-secure system

from scratch as engineers do not have to cope with

complex DPA protection mechanisms within the cipher

implementation.

Third, we give two lightweight Meas instances suit-

able for RAM that encrypt and authenticate the tree

nodes with strictly bounded data complexity per key.

Meas-v1 uses the PRINCE cipher and derives a fresh

key for each encryption block using the sponge As-

con. Meas-v2 provides faster tree traversal by using

the same key for the encryption of several, but a suffi-

ciently small number of, e.g., 4 or 8, blocks using the

tweakable cipher QARMA.



MEAS: Memory Encryption and Authentication Secure Against Side-Channel Attacks 3

Finally, we implement both Meas instances on

the Xilinx XC7Z020 System on Chip (SoC) Field Pro-

grammable Gate Array (FPGA) to practically evaluate

the performance of RAM encryption and authenti-

cation with Meas1. We show that Meas provides

protection against the very powerful DPA attacks,

and still features the same performance and memory

overhead as state-of-the-art memory authentication

schemes which completely lack side-channel protection.

In particular, we show that a 4-ary, first-order DPA

secure instance of Meas-v2 is a highly suitable choice

for encrypting and authenticating RAM in practice.

Contrary to that, protecting cryptographic implemen-

tations against DPA to make use of state-of-the-art

schemes would result in massive overheads making

memory encryption and authentication infeasible.

Outline. This work is organized as follows. In Section 2,

we first state our threat model and requirements, and

we then discuss the state of the art on memory en-

cryption and authentication. The state of the art on

side-channel attacks and countermeasures is content of

Section 3. We analyze the re-keying countermeasure

in terms of memory encryption in Section 4 and use

the results to present our first-order DPA secure Meas

in Section 5. Section 6 then presents data masking to

achieve higher-order DPA security in Meas. We give

two lightweight instances of Meas suitable for RAM in

Section 7 and detail their implementation in Section 8.

An evaluation of Meas is done in Section 9 and we

finally conclude in Section 10.

2 Memory Encryption and Authentication

The encryption and authentication of memory is an im-

portant measure to prevent attackers with physical ac-

cess from learning and/or modifying the memory con-

tent. There are several schemes for memory encryption

and authentication available, but none of them takes

the risk of side-channel attacks into account.

In this section, we define two threat models: the

non-leaking chip model restates the state of the art [17,

25, 44, 48, 54, 55], and the extended leaking chip model

further takes side-channel leakage into account. More-

over, we summarize present techniques for memory en-

cryption and authentication and its requirements.

1 Both implementations are available at https://github.

com/IAIK/memsec.

2.1 Threat Model and Requirements

The non-leaking chip model in previous works assumes

a single, secure microchip performing all relevant com-

putations, e.g., a CPU. An attacker cannot perform any

kind of active or passive attacks against this chip. All

other device components outside this chip, e.g., buses,

RAM modules and HDDs, are under full control of

the adversary. Therefore, a physical attacker can, e.g.,

probe and tamper with buses, exchange peripherals, or

turn the whole device on and off. For off-chip mem-

ory, this means that an attacker with physical access

is capable of freely reading and modifying the memory

content.

While reading can give an attacker access to con-

fidential data stored inside the memory, modification

breaks memory authenticity in several ways [17]: In

spoofing attacks, an attacker simply replaces an exist-

ing memory block with arbitrary data, in splicing at-

tacks, the data at address A is replaced with the data

at address B, and in replay attacks, the data at a given

address is replaced with an older version of the data at

the same address.

Our leaking chip model extends the non-leaking chip

model by considering passive side-channel attacks. It as-

sumes that the microchip performing all relevant com-

putations leaks information on the processed data via

side channels, e.g., power and electromagnetic emana-

tion (EM). Physical attackers can observe this leakage

and perform side-channel attacks.

Hence, cryptographic schemes protecting the confi-

dentiality and authenticity of off-chip memory in the

leaking chip model have to fulfill three main require-

ments.

1. The only information an adversary can learn from

memory is whether a memory block (i.e., ciphertext)

has changed or not.

2. Prevention of spoofing, splicing, and replay attacks.

3. Protection against side-channel attacks.

In addition, fast random access to all memory blocks,

high throughput (fast bulk encryption), and low mem-

ory overhead are desired.

2.2 Memory Encryption

Memory encryption schemes usually split the memory

address space into blocks of predefined size, e.g., sector

size, page size, or cache line size. Each of these blocks

is then encrypted independently using a suitable en-

cryption scheme. The partitioning of the address space

into memory blocks aims to provide fast random access

on block level and fast bulk encryption within the in-

stantiated encryption scheme. Hereby, the chosen block

https://github.com/IAIK/memsec
https://github.com/IAIK/memsec


4 Thomas Unterluggauer et al.

size strongly affects possible trade-offs w.r.t. metadata

overhead, access granularity, and speed.

So far, several memory encryption schemes have

been proposed in the non-leaking chip model and are

being used nowadays, e.g., the tweakable encryption

modes XEX [47] and XTS [30], CBC with ESSIV [20],

and counter mode encryption [48,54].

2.3 Memory Authentication

Like for memory encryption, memory authentication

schemes split the memory address space into blocks and

aim for separate authentication of each of these blocks.

Several memory authentication schemes have been pro-

posed in the non-leaking chip model.

For example, a keyed Message Authentication Code

(MAC) using the block address information can protect

against spoofing and splicing attacks. However, it still

allows for replay attacks. In order to protect against re-

play attacks, authenticity information must be stored

in a trusted environment, e.g., in secure on-chip mem-

ory, that an attacker cannot modify. Authentication

trees minimize this demand for secure on-chip storage,

namely, only the tree’s root is stored in secure memory,

while the remaining tree nodes can be stored in pub-

lic memory. Such trees therefore protect against spoof-

ing, splicing, and replay attacks. Authentication trees

over m memory blocks with arity a have logarithmic

height l = loga(m). Three prominent examples of au-

thentication trees are Merkle trees [40], Parallelizable

Authentication Trees [27] (PAT), and Tamper Evident

Counter [18] (TEC) trees. We give a detailed descrip-

tion of them in Appendix A.

3 Side-Channel Attacks

Present memory encryption and authentication

schemes are designed to protect off-chip memory

against adversaries with physical access assuming a

microchip that is secure against all active and passive

attacks. However, in IoT scenarios, the assumption

that the microchip is secure against all passive attacks

is often too strong since, in practice, a microchip

running an algorithm leaks information on the pro-

cessed data via various side channels, such as power,

timing, and electromagnetic emanation (EM). This

allows adversaries to perform passive side-channel

attacks, which can reveal secret keys that are used in

cryptographic implementations. There exist two basic

classes of passive side-channel attacks [34]: Simple

Power Analysis (SPA) and Differential Power Analysis

(DPA). Originally, SPA and DPA have been introduced

for the power side-channel, but their basic principle is

applicable to all kinds of side channels such as power,

EM, and timing. Therefore, we will use the terms SPA

and DPA throughout the paper, but note that our

elaborations apply to all kinds of side channels.

3.1 Simple Power Analysis

In SPA attacks, the adversary tries to learn the se-

cret value processed inside a device from observing side

channels during a single processing of the secret value

to be revealed, e.g., the adversary tries to learn the

encryption key from a power trace observed during a

single encryption. However, the adversary is allowed

to observe the same encryption multiple times to re-

duce measurement noise. Clearly, an implementation

that cannot keep a key secret for a single encryption

is worthless. Therefore, bounded side-channel leakage

for a single encryption and thus security against SPA

attacks is a precondition for any implementation.

3.2 Differential Power Analysis

Quite naturally, the amount of information learned

about a secret value from a side channel increases with

the number of different inputs processed under the

respective secret. This is exploited in DPA attacks,

which use the observation of several different process-

ings of a secret value in a device to learn its value, e.g.,

the adversary tries to learn the secret key from power

traces observed during the en-/decryption of multiple

(public) input values.

One important property of DPA attacks is their or-

der. The order d of a DPA [34, 41] is defined as the

number of d different internal values in the executed

algorithm that are used in the attack. The attack com-

plexity of DPA grows exponentially with its order [12].

3.3 Profiled Attacks

Independently of whether SPA or DPA is performed,

side-channel attacks can make use of profiling. Profiling

of a side-channel, e.g., the power consumption, means to

construct templates [13] that classify the side-channel

information of a target device with respect to a certain

value processed inside the device. In the actual attack,

the templates are matched with the side-channel trace

to gain some information on the value processed in-

side the device. The information learned from template

matching can then be exploited in either SPA or DPA

manner. Note however that conducting profiled attacks



MEAS: Memory Encryption and Authentication Secure Against Side-Channel Attacks 5

requires much more effort than performing non-profiled

attacks. Further note that in many applications it is im-

possible to perform the required profiling step at all.

3.4 DPA Countermeasures

The effectiveness of DPA attacks has caused a lot of ef-

fort to be put into the development of countermeasures

to prevent DPA. Two basic approaches to counteract

DPA have evolved, namely, (1) to protect the crypto-

graphic implementation using mechanisms like mask-

ing, and (2) the frequent re-keying of unprotected cryp-

tographic primitives.

3.4.1 Masking

Masking [12, 23], also called secret sharing, is a tech-

nique that can hinder DPA attacks up to certain or-

ders. The idea behind masking is to prevent DPA by

making the side-channel leakage independent from the

processed data.

In a masked cryptographic implementation, every

secret value v is split into d+1 shares v0, ..., vd in order

to protect against d-th order DPA attacks. Thereby, d

shares are chosen uniformly at random and the (d +

1)-th share is chosen such that the combination of all

d+ 1 shares gives the actual secret value v. As a result,

an adversary is required to combine the side-channel

leakage of all d+ 1 shares to be able to exploit the side

channel, i.e., to perform a (d+ 1)-th order DPA.

While the masking operation itself is usually cheap,

e.g., XOR, cryptographic primitives typically contain

several operations that become more complex in the

masked representation. This eventually results in mas-

sive implementation overheads. For example, the 1st-

order DPA secure threshold implementations of AES

in [10,42] add an area-time overhead of a factor of four.

3.4.2 Frequent Re-Keying

The success rate of key recovery with DPA rises with

the number of different processed inputs. Therefore, fre-

quent re-keying [33,39] tries to limit the number of dif-

ferent processed inputs per key, i.e., the data complex-

ity.

The countermeasure constrains a cryptographic

scheme to use a certain key k only for q different

public inputs (q-limiting [53]). When the limit of q

different inputs is reached, another key k′ is chosen.

Thus, for a certain key k, an adversary can only obtain

side-channel leakage for q different inputs, which limits

the feasibility of DPA to recover k.

k0 fF

p0

c0

k1 fF

p1

c1

k2 …

Fig. 1: Generic encryption scheme ENC.

Therefore, designing schemes and protocols with

small data complexity q is one measure to prohibit

DPA against unprotected cryptographic implementa-

tions. In more detail, it is widely accepted that very

small data complexities, i.e., q = 1 and q = 2, have suf-

ficiently small side-channel leakage and do not allow for

successful key recovery from DPA attacks [7,46,53,56].

Leakage-Resilient Cryptography. Frequent re-keying

can be applied to any cryptographic scheme, e.g., an

encryption scheme ENC or an authenticated encryp-

tion scheme AE, by choosing a new key whenever a

new message has to be encrypted and authenticated,

respectively. However, in such a re-keying approach,

side-channel resistance is also affected by the concrete

instance of the cryptographic scheme. In practice, the

cryptographic scheme must be able to process arbi-

trarily long messages using a standard primitive, e.g.,

AES with 128-bit block size. This situation facilitates

DPA in certain modes, such as CBC. Therefore, the

cryptographic scheme must be designed with special

care.

A generic construction for an encryption scheme
ENC that can process arbitrarily long messages with-

out DPA vulnerability is given in Fig. 1. For DPA secu-

rity, it requires a new key k0 to be chosen for every new

message. To securely process an arbitrary number of

message blocks, the depicted scheme chains a primitive

F that encapsulates the block encryption ci = E(ki; pi)

and a key update mechanism ki+1 = u(ki). Hereby, the

included key update mechanism ki → ki+1 ensures the

unique use of each key ki. The construction can be con-

sidered secure against side-channel attacks if the key

update mechanism is chosen such that the side-channel

leakages of all invocations to F cannot be usefully com-

bined. However, note that given that the key is iter-

atively derived using F , random access to individual

blocks is typically quite expensive.

Exemplary constructions following the principle of

Fig. 1 to design DPA secure schemes from unprotected

primitives are the leakage-resilient encryption schemes

in [46, 53, 56] and the leakage-resilient MAC in [45].

Block-cipher based instantiations of these schemes have



6 Thomas Unterluggauer et al.

a data complexity of q = 2 in order to prohibit success-

ful key recovery via DPA attacks.

4 Re-Keying for Memory Encryption

Frequent re-keying is a mechanism to protect against

DPA without requiring that the implementation of the

cryptographic primitive uses costly DPA countermea-

sures such as masking. Simultaneously, there are more

and more practical systems being deployed with unpro-

tected cryptographic accelerators by vendors not be-

ing aware of side-channel attacks. As a result, re-keying

based schemes are an interesting option for protecting

memory encryption and authentication against DPA.

In this section, we perform the first investigation

of the security of re-keying in the context of memory

encryption and authentication. It shows that contrary

to other use cases, the re-keying operation itself can be

realized without DPA countermeasures when protecting

memory. However, we also show that the application

of re-keying to memory encryption allows for profiled,

higher-order DPA that leaks confidential constants in

memory due to read-modify-write operations inevitably

occuring in encrypted memory.

4.1 The Re-Keying Operation

Up until now, the principle of re-keying was applied

only to communicating parties aiming for confidential

transmission. Hereby, constructions following Fig. 1

prevent DPA, but require the initialization with a

fresh key and thus secure key synchronization between

the communicating parties. A common approach to

this synchronization is to derive a fresh key from a

shared master secret k and a public, random nonce

n [21, 39, 53]. However, this approach shifts the DPA

problem to the key derivation, which thus needs DPA

protection through mechanisms like masking.

The encryption and authentication of data stored

in memory gives different conditions for the instantia-

tion of re-keying based schemes. In particular, encrypt-

ing data in memory means that en- and decryption is

performed by the same party, i.e., a single device en-

crypts data, writes it to the memory, and later reads

and decrypts the data. Therefore, key synchronization

becomes unnecessary and the cryptographic scheme can

be re-keyed using random numbers without the need

for any cryptographic primitive or function being im-

plemented with DPA countermeasures.

4.2 Re-Keying and Plaintext Confidentiality

The typical target of DPA attacks is the key being used

as key recovery fully breaks a cryptographic scheme.

Re-keying based schemes thus thwart such attacks and

make DPA on the key infeasible. However, the actual

goal of encryption is to ensure data confidentiality.

Therefore, protecting the key against DPA is a useful

measure, but as our analysis shows, the application of

re-keying to memory encryption can yet result in a loss

of memory confidentiality.

The main observation that leads to this conclusion

are read-modify-write operations that inevitably occur

in any encrypted memory. These take place whenever

the write granularity is smaller than the encryption

granularity. For example, when a single byte is writ-

ten to a memory that is encrypted using an 128-bit

block cipher, the respective 128-bit encryption block

has to be loaded from memory, decrypted and modi-

fied according to the byte-wise write access, and then

be encrypted again and written back to the memory.

In this case, 120 bits of the respective block remain

the same. The same phenomenon is observed in en-

cryption schemes that cover multiple encryption blocks

p0, p1, p2, ... . Here as well, one plaintext block, e.g., p0,

might be changing, while others, e.g., p1, remain con-

stant.

If now re-keying is applied to memory encryption,

the constant plaintext parts within read-modify-write

operations will be encrypted several times using

different keys. This causes constant, secret plaintext

parts to be mixed with varying keys. This situation

is quite similar to the original DPA setting, where a

constant, secret key is mixed with varying plaintexts.

For stream ciphers, attackers can easily exploit this

mixing operation—the XOR of varying pad and

constant plaintexts—in a first-order DPA. Namely,

attackers can model the power consumption of the

varying pad for each plaintext hypothesis using the

observed ciphertexts. Matching the power model with

the side-channel observations eventually reveals the

constant plaintext. For block ciphers, a first-order DPA

does not work, but a profiled, second-order DPA that

is similar to unknown plaintext template attacks [28]

can be applied to learn constant plaintexts. While

we emphasize that there are also other second-order

techniques, e.g. [14, 35], that can be employed in

this setting, we consecutively focus on adapting un-

known plaintext template attacks to extract constant

plaintexts from re-keyed block ciphers.

Unknown Plaintext Template Attacks. In [28],

the constant key k of a block cipher E is attacked

by observing the encryption of several unknown



MEAS: Memory Encryption and Authentication Secure Against Side-Channel Attacks 7

plaintexts with the help of power templates. Hereby,

the power templates are used to learn information

on the unknown plaintexts p0, p1, ... and intermediate

values v0, v1, ... in the respective encryption processes

E(k; p0), E(k; p1), ... . Exploiting the relation between

the information learned on p0, p1, ... and v0, v1, ..., the

key k is recovered. As the attack combines side-channel

information from both the unknown plaintexts p0, p1, ...

and the intermediate values v0, v1, ..., the order of this

attack is two.

The described attack can be easily applied to a

re-keyed encryption scheme (cf. Fig. 1). Namely, read-

modify-write operations cause a constant plaintext

block pi to be encrypted several times using different

keys ki, k
′
i, ... . Changing the roles of plaintext and key

in the attack from [28], re-keying allows to learn the

constant plaintext block pi from side-channel informa-

tion on the varying key ki, k
′
i, ... and some intermediate

value vi, v
′
i, ..., both extracted using power templates.

As a result, one plaintext may only be encrypted

with one single key for re-keying to completely thwart

DPA. This also seems reasonable in the view of leaking

more information on a plaintext, the more often it

is encrypted under different conditions, i.e., using

different keys.

Summarizing, memory encryption inevitably causes

read-modify-write operations. These cause re-keyed

stream ciphers to become vulnerable to first-order

DPA and re-keyed block ciphers to become vulnerable

to profiled, second-order DPA. These attacks do not

target the actual keys, but the confidential memory

content. While these attacks cannot be prevented

in the memory scenario, note that the effort and

complexity of profiled, second-order DPA attacks is

very high in practice. Hence, re-keyed block encryption

provides a suitable basis to construct a memory

encryption scheme with first-order DPA security. We

further pursue this approach in Section 5. To obtain

higher-order security, we extend our design in Section 6

and propose masking of the stored plaintext values.

This effectively increases the number of values to be

recoverd via templates without the need for masking

being implemented in the cipher.

5 DPA-Secure Memory Encryption and

Authentication

The analysis in Section 4 showed that frequent re-

keying of a block cipher based mode is a suitable

approach to construct a memory encryption and

authentication scheme with first-order DPA security

from unprotected cryptographic primitives. However,

one major requirement in Section 2 is to provide fast

random access in memory, but random access is not a

feature of present re-keying based encryption schemes.

A common way to provide fast random access to

large memory is to split the memory into blocks that

can be directly accessed. However, encrypting each of

these memory blocks by the means of fresh re-keying

would render the number of keys to be kept available in

secure on-chip storage too high. This problem is quite

similar to memory authentication with replay protec-

tion, which also requires block-wise authenticity infor-

mation to be stored in a trusted manner. To tackle this

issue, state-of-the-art authenticity techniques (cf. Sec-

tion 2 and Appendix A) employ tree constructions to

gain scalability and to minimize the required amount

of expensive on-chip storage.

In this section, we therefore use the synergies be-

tween frequent re-keying and memory authentication to

present Meas—a Memory Encryption and Authentica-

tion Scheme with first-order DPA security built upon

unprotected cryptographic primitives and suitable for

all kinds of large memory, e.g., RAM and NVM. Similar

to existing memory authentication techniques, Meas

uses a tree structure to minimize the amount of secure

on-chip storage. However, instead of hashes or nonces,

keys are encapsulated within the tree. In more detail,

the leaf nodes of the tree, which store the actual data,

are encrypted and authenticated using an authenticated

encryption scheme that is provided with fresh keys on

every write access. Similarly, the inner nodes of the

tree, which store the encryption keys for their respective

child nodes, are encrypted with an encryption scheme

that uses a fresh key on every write. Meas is shown

secure in the leaking chip model, and in particular, its

DPA security is substantiated by limiting the number

of different processed inputs per key to q = 2 such as

in [7, 46,53,56].

In the following, we first present the construction

of Meas, followed by a security analysis considering

authenticity and side-channel attacks.

5.1 Construction

The construction of Meas is designed to be secure

according to the leaking chip model. Therefore, Meas

requires an SPA-secure block encryption scheme ENC

and an SPA-secure authenticated encryption scheme

AE. Both ENC and AE have to fulfill the common

security properties for (authenticated) encryption

schemes and must be based on block encryption such

as in [56]. However, Section 7 will detail concrete

instances for both ENC and AE. Apart from that, any

other operations within Meas, such as loading keys,



8 Thomas Unterluggauer et al.

c1 t1

dek0 dek1

kek2,0 kek2,1

kek0,0

c0 t0 c3 t3

dek2 dek3

c2 t2 c5 t5

dek4 dek5

c4 t4 c7 t7

dek6 dek7

c6 t6

kek2,2 kek2,3

kek1,0 kek1,1

c2,0 c2,1 c2,2 c2,3

c1,0 c1,1

c0,0

Fig. 2: Meas’s tree construction for m = 8 data blocks and with an arity of a = 2.

must be SPA-secure. In addition, a secure random

number generator is needed for generating keys.

An example of the tree construction proposed for

Meas is depicted in Fig. 2. For the sake of simplic-

ity, this example as well as the following description

assumes the use of a binary tree, i.e., arity a = 2. How-

ever, instantiating the tree with higher arity is easily

possible.

The structure of Meas is as follows. The data in

memory is split into m plaintext blocks pi. Each of these

pi is encrypted and authenticated to a ciphertext-tag

pair (ci, ti) using the authenticated encryption scheme

AE with data encryption key deki:

(ci, ti) = AE(deki; pi) 0 ≤ i ≤ m− 1.

The encryption scheme ENC then encrypts the data

encryption keys deki to the ciphertexts cl−1,i using key

encryption keys kekl−1,i. The operator || denotes con-

catenation.

cl−1,i = ENC(kekl−1,i; dek2i||dek2i+1) 0 ≤ i ≤ m

2
− 1.

Recursively applying ENC in a similar way to the

key encryption keys finally leads to the desired tree.

cj,i = ENC(kekj,i; kekj+1,2i||kekj+1,2i+1)

0 ≤ j ≤ l − 2, 0 ≤ i ≤ m

2l−j
− 1.

While all ciphertexts and tags are stored in public,

untrusted memory, the root key kek0,0 is stored on the

leaking chip.

5.1.1 Read Operation

When reading data (ci, ti) from memory, all the keys on

the path from the root key kek0,0 down to the respec-

tive data encryption key deki are decrypted one after

another. The data encryption key deki is then used to

decrypt and authenticate the respective memory block

(ci, ti).

For example in Fig. 2, to obtain the plaintext block

p2 stored in (c2, t2), the root key kek0,0 is used to de-

crypt kek1,0. Then, kek1,0 is used to decrypt kek2,1,

which permits to decrypt dek2. Finally, dek2 is used

with (c2, t2) to authenticate and decrypt the respective

plaintext p2.

Note that the decryption of the encapsulated keys

can only be performed sequentially. However, this is

not considered a problem since computation is typi-

cally much faster than storage (e.g., RAM or HDD).

On the other hand, caching of the intermediate nodes

(key encryption keys) is supported by Meas in order

to achieve good performance, e.g., small average access

latency.

5.1.2 Write Operation

Writing data to the memory is where the actual re-

keying is performed. Namely, the process of updating

pi with p′i involves the replacement of all keys along

the path from the root key kek0,0 down to the respec-
tive data encryption key deki with randomly generated

ones. On the other hand, the keys for the adjacent sub-

trees are only reencrypted under the new node keys.

This re-keying can be performed in a single pass from

the root to the leaf node of the tree.

For example in Fig. 2, when block p5, which is stored

in (c5, t5), gets replaced, also the keys kek0,0, kek1,1,

kek2,2 and dek5 have to be changed. Therefore, the

node c0,0 is decrypted to extract kek1,0 and kek1,1. The

new node c′0,0 can then be determined by encrypting

kek1,0 and a new kek′1,1 with the new key encryption

key kek′0,0. The nodes c1,1 and c2,2 are updated in the

same way. The new data block (c′5, t
′
5) is then the result

of authenticated encryption of p′5 under the new data

encryption key dek′5.

Note that it is not necessary to check authentic-

ity when a full block is written to the memory. Only

read-modify-write operations on a data block require

an authenticity check. This authenticity check is au-

tomatically performed when the data is read prior to



MEAS: Memory Encryption and Authentication Secure Against Side-Channel Attacks 9

modification and thus does not inhere any additional

costs. Also note that read-modify-write operations re-

quire only one single tree traversal, because the data

encryption key required for the read operation auto-

matically becomes available in the last steps of the write

(and re-keying) procedure.

5.2 Authenticity

The design of Meas protects data authenticity with

respect to spoofing, splicing, and replay attacks using

both the authentic root key and the AE scheme. In par-

ticular, spoofing and splicing attacks on the leaf nodes

are directly detected by the AE scheme since different

keys are used for each block. Moreover, the AE scheme

indirectly also protects the inner tree nodes for prop-

erly chosen schemes AE and ENC. In such case, any

tampering with the ciphertext of an intermediate node

will lead to a random but wrong key to be decrypted.

This tampering will thus propagate down to the leaf

node to give an erroneous, random data encryption key

and finally an authentication error.

Replay protection for all nodes is the result of the

authentic root key, which gets updated on every write to

any leaf node, i.e., choosing a new, random root key on

every write access ensures that the secure root reflects

the current state of the tree in public memory. Vice

versa, the authenticitiy tags in the leaf nodes output

by the AE scheme reflect the authenticity of the path

from the root to the respective data block. Therefore, if

the authenticity check of a leaf node fails, any node on

the path from the root to the leaf may be corrupted.

5.2.1 Handling corruption

Our approach to verify the authenticity within Meas

also has a strong influence on how data accesses need

to be performed to be side-channel secure. In particu-

lar, Meas relies on two schemes ENC and AE that,

for any tree node size, use each (internal) key only for

a small number of, e.g., q = 2, encryption blocks. To

guarantee this property of ENC and AE also when

accessing a certain leaf node within Meas, a secure im-

plementation must only decrypt those plaintext parts

within intermediate tree nodes (i.e., keys) that are ac-

tually needed for accessing the requested data block in

the leaf. Namely, these keys become authenticated when

accessing the leaf node, which allows to detect malicious

modifications of these keys in memory. Eventually, this

allows to identify attackers who perform DPA attacks

on encryption keys by introducing authenticity failures

on purpose. On the other hand, decrypting keys (in in-

termediate tree nodes) that are not used any further

allows attackers to modify the respective keys’ cipher-

text and thus to induce a DPA setting without being

detected [15]. Nevertheless, when a corrupted leaf node

has been detected, the authenticity of the tree must be

restored before any further actions are taken.

Restoring authenticity of the tree is simple and

requires no additional support. It is sufficient to replace

all corrupted data (leaf) nodes with random values

since regular writes restore authenticity from the root

to the respective leaf node. Restoring authenticity

in this manner also causes re-keying on all nodes

on the path from the root to the leaf to take place.

This re-keying procedure effectively thwarts any

DPA that otherwise could be performed by malicious

modification of stored ciphertexts.

For example in Fig. 2, if the authenticity check of

the node (c4, t4) fails, any of the nodes c0,0, c1,1, c2,2 and

(c4, t4) can be erroneous. Therefore, the plaintext p4 is

replaced with a random plaintext p′4 in order to restore

the authenticity. Hereby, new keys kek′0,0, kek
′
1,1, kek

′
2,2

and dek′4 are chosen and the stored values c′0,0, c
′
1,1, c

′
2,2

and (c′4, t
′
4) are updated accordingly. This procedure re-

stores the authenticity of the path from kek0,0 to dek4,

but leaves any adjacent subtree intact. Moreover, the

choice of fresh keys kek′0,0, kek
′
1,1, kek

′
2,2 and dek′4 pre-

vents first-order DPA through adversaries repeatedly

modifying c′0,0, c
′
1,1, c

′
2,2 or (c′4, t

′
4).

5.2.2 Recovering from corruption

Depending on the actual application, there are different

approaches to deal with the corruption. A straightfor-

ward approach, which is suitable for RAM encryption,
is to simply reset the tree and start from scratch. The

memory encryption engine of SGX [25], for example,

follows this approach and requires a system restart to

recover. However, applying this idea to block-level disk

encryption is impractical since a reset of the tree is

equivalent to destroying the data of the whole block

device.

Another, more graceful approach is to recover from

the corruption when possible. In the case of RAM en-

cryption, it is, for example, possible that the operating

system kills (and restarts) only those processes which

actually accessed a corrupted data block. In the setting

of disk encryption, it can be enough to report which

files or directories were destroyed to enable appropriate

error handling.

Given a single authentication failure, it is not pos-

sible to determine which node is corrupted. However,

since corruptions in higher tree nodes lead to authen-

ticity failures in more data blocks, it is possible to iden-

tify the subtree which is affected by the data corrup-



10 Thomas Unterluggauer et al.

tion using multiple adjacent reads. This can even be

done quite efficiently in a binary search like approach

(i.e., O(logm) reads), assuming that only a single node

has been corrupted.

For example in Fig. 2, when the authenticity check

of data block 2, i.e., (c2, t2), fails, then data block 3 is

checked next. If block 3 is authentic, then only block

2 (child of dek2) is corrupted. Otherwise, either block

0 or block 1 is checked next. If this next block is au-

thentic, then only blocks 2 and 3 (children of kek2,1)

have been corrupted. In case of another error, a final

check in the right subtree (children of kek1,1) is needed

to determine if only the left subtree (children of kek1,0)

or the whole tree is corrupted. Note however that lo-

cating the corruption requires each authenticity failure

to be followed by a re-keying step as described in Sec-

tion 5.2.1 in order to resist DPA. For example, if data

block 2 is read and detected to be corrupted, the path

from the root key to data block 2 must be re-keyed. If

during the location phase data block 3 is detected to

be unauthentic as well, also the path from the root key

to data block 3 must be re-keyed. The same procedure

applies to all other checks in the location phase.

5.3 Side-Channel Discussion

We discuss the side-channel security using three types

of attackers with increasing capabilities. The first type

solely uses passive attacks and tries to exploit the

side-channel leakage during operation. The second type

additionally induces authenticity errors by tampering

with the memory and strives for exploiting error

handling behavior. The third type further tries to gain

an advantage by restarting, i.e., power cycling, the

whole system at arbitrary points in time.

Passive Attacks. The protection of Meas against DPA

lies within the re-keying approach. Therefore, every

randomly generated key is used for the encryption and

decryption of exactly one tree node with one specific

plaintext. As soon as the plaintext of a node changes

in any way, also a new key for the encryption of the

respective node is generated.

For a certain key, a physical attacker who only pas-

sively observes Meas can thus at most acquire side-

channel traces of one encryption and arbitrarily many

decryptions of one single plaintext. Even though the

trace number is possibly high, the best an attacker can

do is to combine all the traces to a single rather noise

free trace of this one key-plaintext pair. To perform

a DPA, on the other hand, traces for multiple differ-

ent plaintexts are required. In the presence of a passive

physical attacker, Meas is therefore secure against first-

order DPA attacks given that both ENC and AE are

SPA secure.

Passive Attacks and Memory Tampering. An active

physical attacker who tampers with the memory con-

tent can gain additional information by corrupting the

ciphertext of certain nodes. Namely, such tampering

gives side-channel information from the decryption

of different data for one single key. However, even

with such tampering it is only possible to acquire one

additional side-channel trace for a specific key. This

is due to the fact that every tampering is detected as

soon as the leaf node is authenticated. Handling the

authentication error involves restoring authenticity

and thus re-keying which makes the gathering of

further traces impossible. As a result, the number of

acquirable traces (i.e., under the same key, but with

different ciphertexts) is clearly bounded by two. Given

the assumptions in related work on leakage-resilient

cryptography [46, 53, 56], bounding the input data

complexity per key by two makes Meas secure against

first-order DPA for malicious memory corruption.

Passive Attacks, Memory Tampering and Restarts.

The side-channel security of Meas relies on the

assumption that tree operations are performed atom-

ically. This means that, e.g., once a read operation

is started, all steps involved in Meas, i.a., the MAC

verification and the re-keying on authenticity failure,

must be performed and completed. This assumption

holds true for a running device since physical fault

attacks on the leaking chip are outside the threat

model. However, restarting the device during operation

can break this assumption. In this case, attackers can

use a combination of power cycling and memory tam-

pering to collect arbitrarily many side-channel traces

and perform a first-order DPA against a non-volatile

key. However, this attack is easily prevented when the

concrete use case is known.

For the encryption and authentication of RAM,

there is simply no reason to maintain persistent

keys between system restarts. Similar to SGX, the

device generates a new random key on startup which

effectively thwarts the attack. For NVM, however,

a persistent root key is unavoidable. Yet, there are

easy and secure solutions for NVM too. For example,

one could store one additional bit on the leaking chip

to record whether a presumably atomic operation is

currently active. This allows to detect aborted oper-

ations in Meas on startup and thus to take further

actions, e.g., counting and storing the number of

aborted operations on the leaking chip and appropriate



MEAS: Memory Encryption and Authentication Secure Against Side-Channel Attacks 11

error handling when a certain threshold is reached.

Such countermeasures can also be integrated with the

transaction/journaling functionality of a file system.

Summarizing, Meas itself does not contain any

mechanism to deal with malicious power cycling.

However, for both RAM and NVM simple and cheap

solutions are available.

6 Higher-Order DPA Security

The tree construction presented in the previous section

provides memory confidentiality and authenticity in the

presence of a first-order side-channel adversary. How-

ever, profiled, second-order attacks as outlined in Sec-

tion 4 still reveal the content of the tree nodes protected

by the means of re-keying. Since the loss of confidential-

ity of a node close to the root would also reveal large

chunks of the protected memory, i.e., all child nodes,

protection against higher-order DPA is desireable.

In this section, we propose masking of the plaintext

values to extend the protection of Meas to higher-order

DPA. The extension works with cryptographic primi-

tives implemented without DPA countermeasures and

allows to dynamically adjust the protection order de-

pending on the actual threat.

6.1 Concept

The basic idea to provide higher order DPA security is

to add a masking scheme (cf. Section 3.4.1) to Meas.

However, unlike the masking of specific cryptographic

implementations, the proposed data masking scheme

operates with unprotected primitives. Therefore, the

plaintext data in each tree node of Meas is first

masked, and then the masked plaintext and the masks

are encrypted separately and both stored in memory.

On decryption, both the masked plaintexts and the

masks are decrypted and the masks applied to obtain

the original plaintext value.

The masking scheme requires new masks to be cho-

sen whenever the key of a tree node is changed. This

is the case on every write access to a specific node. As

a result, the data being encrypted is randomized. This

prevents that constant data is encrypted under different

keys. Moreover, it requires adversaries trying to learn

a constant plaintext using profiled attacks such as de-

scribed in Section 4 to additionally extract information

on every single mask from the side-channel. Therefore,

the order of the attack increases accordingly.

6.2 Masking Details

The following masking approach can be applied accord-

ingly to both the intermediate nodes, which use an en-

cryption scheme ENC, and the leaf nodes, which use

an authenticated encryption scheme AE. However, for

simplicity we only consider the encryption of an arbi-

trary tree node using an encryption scheme ENC.

When encrypting a tree node in Meas, the node’s

plaintext p is split into b + 1 blocks p0, ..., pb accord-

ing to the size of the underlying encryption primitive,

i.e., 128 bits in case of AES. In order to protect this

node against d-th order DPA, d− 1 random and secret

masks m0, ...,md−2 have to be generated. These masks

are then applied to each plaintext block pi to give ran-

dom values ri:

ri = pi ⊕m0 ⊕ ...⊕md−2 0 ≤ i ≤ b.

In the actual encryption, both the masks

m0, ...,md−2 and the random values r0, ..., rb are

processed and the respective ciphertext c is stored in

memory:

c = ENC(dek;m0||...||md−2||r0||...||rb).

Whenever the node has to be read, the ciphertext

is decrypted to give m0||...||md−2||r0||...||rb. To obtain

the plaintext blocks pi, the masking is reverted by again

xor-ing all masks m0, ...,md−2 to each block ri.

6.3 Side-Channel Discussion

The re-keying of the (authenticated) encryption scheme

guarantees that adversaries are not capable of build-

ing suitable DPA power models from the observation

of ciphertexts and thus prevents DPA against the key

completely.

To prevent the loss of plaintext confidentiality from

the profiled, second-order attacks outlined in Section 4,

the proposed masking scheme randomizes the plaintext

input using d−1 random, secret masks. As a result, the

scheme requires adversaries to combine side-channel in-

formation from (d + 1) different values to recover the

plaintext, i.e., to perform a (d + 1)-th order DPA. In

particular, such DPA requires to learn side-channel in-

formation on the varying key, an intermediate value in

the cipher, and the d−1 masks. On the other hand, the

masking scheme requires to additionally encrypt d − 1

masks in each tree node. However, for a properly chosen

encryption scheme ENC, these encryption operations

cannot be exploited in a DPA, because both the masks

and the keys are random and always changed simul-

taneously on every write access to the respective tree

node.



12 Thomas Unterluggauer et al.

f r1 f r2
0

E
p
0

c
0

f r2

E
c
1

p
1

f r2

E
c
u-1

p
u-1

...

k
0

k
1

k
2

k
u

Fig. 3: Schematic overview of ENC in Meas-v1.

Unfortunately, using the same masks for multiple

encryption blocks within a tree node can yet give side-

channel leakages with an order below d + 1. For illus-

tration, we consider a single mask m0, i.e., d = 2. In

this case, attackers could exploit the combination of m0

with b+ 1 different plaintext blocks within a tree node

to learn the mask m0 in a second-order side-channel at-

tack with unknown in- and output. Once m0 is known,

m0 can be used to learn a constant plaintext block pi in

the same tree node using another second-order attack.

However, such lower-order attacks are impractical

for Meas for two main reasons. First, in order to per-

form a lower-order attack on a constant pi, an attacker

must initially learn all the masks m0,m
′
0,m

′′
0 , ... as they

are changed upon re-keying. Second, the number of dif-

ferent operations with a certain mask m0 is bounded by

the number of b+ 1 plaintext blocks in each tree node.

For example, a 4-ary instance of Meas might reuse the

same mask four times, which will typically not suffice

to recover the mask. Consequently, the data complexity

for each mask is limited in the same way as it is limited

for each key within Meas, making lower-order attacks
to learn the masks practically infeasible. Contrary to

that, the number of different keys used for a constant

plaintext block pi is potentially unlimited.

The data complexity for each mask depends on the

number of plaintext blocks in a tree node that share

the respective mask. This number of plaintext blocks

depends on the tree arity a for intermediate nodes, and

on the data block size sb for data leaf nodes. Hence,

both the data block size and the tree arity must be

chosen to give a data complexity per mask that suits the

device’s leakage behavior. Hereby, note that learning

the masks involves at least a second-order attack setting

with unknown in- and output, which usually allows for

higher data complexities than for keys that en-/decrypt

known plain- or ciphertexts.

From an implementation perspective, the sum of

plaintext and the masks must be stored in a register

prior to the encryption operation for the masking to

protect Meas also in the presence of hardware glitches.

This is automatically the case if the masking is imple-

mented in software. Hereby, the result is stored in a

register and may then, e.g., be further processed in a

cryptographic hardware accelerator.

Besides, we also emphasize that profiled DPA at-

tacks such as in Section 4—which are counteracted by

the proposed masking scheme—are quite hard to con-

duct on state-of-the-art systems. For example, while

the unknown plaintext template attack in [28] was per-

formed against software implementations on 8-bit and

32-bit microcontrollers, a profiled DPA will take signif-

icantly more effort on hardware implementations em-

bedded in a complex system-on-chip. Moreover, the at-

tack complexity also rises rapidly with the attack or-

der. As a result, small protection orders will already

be sufficient for Meas in practice. However, a detailed

analysis of the side-channel leakage of a device imple-

menting Meas is indispensable for a proper choice of

the protection order.

6.4 Implementation Aspects

The definite choice of the implemented protection or-

der allows for various trade-offs influenced by several

parameters: the cost for storing the masks, the concrete

leakage behavior of the device, and the risk. Hereby, the

leakage behavior and the cost for storing the masks are

closely coupled.

A DPA is more likely to be successful on a device the

more side-channel leakage the device gives. Therefore,

a higher protection order is needed the more the device

leaks, which leads to higher storage costs for masks. Al-

ternatively, the leakage of the device might be reduced

by hiding countermeasures [38] in the implementation,

such as shuffling. However, such countermeasures can

only be built into newly designed devices. Nevertheless,

besides the actual strength of a potential attacker, the

actual leakage behavior of the device forms the basis

for the choice of the protection order and thus memory

cost.

Besides, the choice of the protection order is also

strongly influenced by the concrete risk of an attack.



MEAS: Memory Encryption and Authentication Secure Against Side-Channel Attacks 13

Algorithm 1: Specification of Meas-v1.

Encryption: ENC(k0; p)

Input: key k0 ∈ {0, 1}skey , plaintext p ∈ {0, 1}∗
Output: ciphertext c ∈ {0, 1}∗

p0, . . . , pu−1 ← b-bit blocks of p
S ← k0||0sstate−skey

S ← fr1(S)
for i = 0, . . . , u− 1 do

k ← S[0 . . . skey − 1]
ci ← E(k; pi)
S ← fr2(S)

return c0|| . . . ||cu−1

Authenticated Encryption: AE(k0; p)

Input: key k0 ∈ {0, 1}skey , plaintext p ∈ {0, 1}∗
Output: ciphertext c ∈ {0, 1}∗, tag t ∈ {0, 1}stag

p0, . . . , pu−1 ← b-bit blocks of p
S ← k0||0sstate−skey

S ← fr1(S)
for i = 0, . . . , u− 1 do

k ← S[0 . . . skey − 1]
ci ← E(ki; pi)
if i 6= 0 then

S ← (S[0 . . . b− 1]⊕ ci−1)||S[b . . . sstate − 1]
S ← fr2(S)

S ← fr1((S[0 . . . b− 1]⊕ cu−1)||S[b . . . sstate − 1])
c← c0|| . . . ||cu−1

t← S[0 . . . stag − 1]
return (c, t)

In more detail, a trade-off between the protection or-

der and the risk is possible. Namely, the higher the risk

of an attack to a specific block, the better should be

the protection of the respective block, i.e., the higher

should be the protection order. Concretely in Meas,

the tree nodes stored in levels closer to the root are a
more interesting target for an attacker since revealing

the keys stored in these nodes would allow to decrypt

large parts of the memory. Therefore, tree nodes closer

to the root are at higher risk and thus need a higher

protection order. However, the number of nodes in one

tree level decreases the closer the respective level is to

the root. As a result, increasing the protection order for

tree nodes at higher risk has only little memory over-

head in Meas and thus is an inexpensive improvement

of security against higher-order DPA.

7 Instantiation

The design of Meas requires an SPA-secure block en-

cryption scheme ENC and an SPA-secure authenti-

cated encryption scheme AE. Using existing proposals

of leakage-resilient block encryption [56] and a leakage-

resilient MAC [45], both ENC and AE can be easily

obtained from unprotected cryptographic implementa-

Algorithm 2: Specification of ENC in Meas-v2.

Encryption: ENC(k0; p)

Input: key k0 ∈ {0, 1}skey , plaintext p ∈ {0, 1}∗
Output: ciphertext c ∈ {0, 1}∗

p0, . . . , pu−1 ← b-bit blocks of p
for i = 0, . . . , u− 1 do

ci ← E(k0; addr(pi); pi)
return c0|| . . . ||cu−1

tions of standard primitives like AES and SHA-2 and

the generic composition encrypt-then-MAC [8]. How-

ever, for the encryption and authentication of RAM,

more lightweight constructions for ENC and AE are

desireable.

In this section, we present two lightweight Meas

instances for the purpose of RAM encryption and au-

thentication. The first, Meas-v1, uses the lightweight

block cipher PRINCE for encryption, and the sponge

Ascon for key stream generation and authentication.

As a result, Meas-v1 uses a fresh key for the encryp-

tion of each plaintext block to prevent DPA on the key.

The second, Meas-v2, improves on Meas-v1 in terms

of efficiency in trade for an slightly increased number of,

e.g., 4 or 8, different inputs processed under the same

key. In particular, it omits key derivation in interme-

diate tree nodes to instead directly access the required

keys using the tweakable block cipher QARMA. The

security of Meas-v2 thus relies on the infeasibility of

DPA for 4- or 8-limited data complexity per key.

7.1 Meas-v1

Our instance Meas-v1 is intended for RAM encryption

and authentication and constructs ENC and AE by

combining two different primitives: a lightweight block

cipher E for encryption, and an r-round permutation

fr for sponge-based key derivation and authentication.

While ENC uses the sponge merely for key stream

generation, the sponge duplex construction [9] is used

in AE to also absorb the computed ciphertext and to

compute the tag. Algorithm 1 gives the description of

the respective algorithms. Their schematic is illustrated

in Fig. 3 and 4, respectively. Since Meas applies (au-

thenticated) encryption to message blocks of fixed, well-

defined length, we describe ENC and AE without a

padding rule and assume the messages to be a multiple

of the b-bit block size of E. Note that for optimiza-

tion, AE absorbs the ciphertexts ci with some delay.

This allows to compute the permutation fr2 and the

encryption E in parallel.

We use PRINCE [11] as the block cipher E and

the Ascon permutation [16] with r1 = 8 and r2 = 6



14 Thomas Unterluggauer et al.

f r1 f r2
k
0

0

E
p
0

c
0

f r2

E
c
1

p
1

f r2

E
c
u-1

p
u-1

...

c
0

f r2

c
u-2

f r1

c
u-1

t
s
tag

k
2

k
1

k
u

Fig. 4: Schematic overview of AE in Meas-v1.

rounds for the sponge. PRINCE uses a key of skey = 128

bits to process blocks of b = 64 bits and the Ascon

state S is sized sstate = 320 bits. These parameters

allow to implement both ENC and AE with adequate

throughput and low latency in hardware. The size of the

tag stag can be chosen according to the desired security

level, e.g., stag = 64 or 128 bits.

7.2 Meas-v2

One performance bottleneck of Meas-v1 is the sequen-

tial key derivation within a tree node. On the other

hand, direct access to a certain key within an interme-

diate tree node can significantly increase performance.

By relaxing the constraints for DPA security, direct ac-

cess to certain keys within a specific tree node becomes

feasible.

For this purpose, we construct ENC using a tweak-

able block cipher. This allows to efficiently en-/decrypt

parts of a tree node similar to ECB, but provides bet-

ter security in terms of ciphertext distinguishability.
Given a tweakable block cipher E(k; τ ; p) that encrypts

a b-bit plaintext p with the key k and tweak τ , a tree

node comprising u plaintext blocks p0, ..., pu−1 is thus

encrypted by simply computing E(k; addr(pi); pi) for

i = 0, ..., u−1, where the tweak τ is set to be the address

of the respective pi in memory. This is summarized in

Algorithm 2.

On the other hand, we keep the design of AE in

Meas-v2 the same as in Meas-v1. However, to avoid

the implementation of another cipher for the use in

AE, we recommend using the same tweakable cipher

E(k; τ ; p; ) in AE as well and set the tweak τ in AE to

either the block address or a constant. As the tweakable

block cipher E(k; τ ; p; ), we use the lightweight design

QARMA-64 [4] with the parameter r = 6.

In terms of DPA, the mentioned approach increases

the number of different inputs processed using a single

key according to the number of plaintext blocks u in

a tree node. However, for many practical implementa-

tions DPA will remain infeasible also for, e.g., 4 or 8,

different encryptions using the same key. This assump-

tion facilitates the efficient and secure implementation

of Meas-v2 for, e.g., binary and 4-ary trees.

8 Implementation

The two lightweight instances Meas-v1 and Meas-v2

are designed for RAM encryption and authentication.

In order to show their practical applicability to this

use case, an implementation allowing the evaluation of

performance and implementation cost is desireable. In

this section, we thus present an implementation of both

Meas instances on the Xilinx Zynq platform.

8.1 Platform

For the implementation, we chose a ZedBoard featur-

ing the Xilinx Zynq XC7Z020 SoC and 512 MB DDR3

RAM. This SoC consists of two parts: (1) a processing

system (PS) comprising a dual-core ARM Cortex-A9

processor as well as several peripherals, and (2) a Xil-

inx Artix-7 programmable logic (PL). The PS is con-

nected to the PL via 32-bit advanced extensible inter-

faces (AXI). The PL has access to the RAM via 64-bit

AXI.

For memory encryption and authentication, we de-

signed an encryption pipeline capable of Meas that is

placed in the PL. As shown in Fig. 5, the software run-

ning on the ARM core is configured such that the pro-

cessor accesses the main memory via the PL, where all

accesses are transparently encrypted and authenticated

using Meas.

8.2 Memory Layout

The implementation of Meas requires to place all the

tree nodes as well as their metadata somewhere in the

RAM. For this purpose, and as shown in Fig. 6, the

physical memory is partitioned into two parts. In the

first part, all data (leaf) nodes of Meas are placed.



MEAS: Memory Encryption and Authentication Secure Against Side-Channel Attacks 15

PL

PS

Processor
with Caches

MEAS Pipeline

Memory
Controller

D
D

R
M

em
ory

Fig. 5: Zynq platform with Meas pipeline.

These also contain their respective authenticity tags.

The consecutive, second part contains all intermediate

tree nodes storing the keys.

8.3 Address Translation

In order to provide the functionality of Meas transpar-

ently to the CPU, a translation of the CPU’s memory

requests to the encrypted physical memory is required.

Without consideration of tree node fetches, Fig. 7 illus-

trates this CPU address translation. The CPU memory

request is split according to the block size of the data

(leaf) nodes. The Meas implementation then issues in-

dependent requests to each of these data leaf nodes.

Hereby, the size of the authentication tags is taken into

account, which causes both an address shift and addi-

tional tags to be fetched.

However, the tree construction requires to also load

several keys to decrypt a certain data (leaf) node. These

key load operations are handled the same way as the re-

quests to the data leaf nodes themselves. In particular,

the Meas implementation issues, translates, and pro-

cesses the respective key load requests to intermediate

tree nodes transparently without further CPU interac-

tion and follows an address translation similar to data

leaf nodes.

8.4 MEAS Pipeline

The pipeline architecture of our Meas implementation

is visualized in Fig. 8. Its design results from the typical

data flow in encrypted memory accesses. In particular,

all requests run through a series of modules performing

different actions. Hereby, the single modules interact by

using a simple handshake mechanism. The width w of

the respective data stream can be set to either 64 or

128 bits.

Our implementation communicates with CPU and

memory via five different AXI4 interfaces: (1) the CPU

address port, (2) the CPU read port, (3) the CPU write

port, (4) the memory read port, and (5) the mem-

ory write port. Read requests use the modules shaded

Data Tag Key

Tree NodesData Nodes

KeyKeyKey

Fig. 6: Memory layout for 4-ary Meas.

in light grey. Write requests are implemented as read-

modify-write operations and additionally use the mod-

ules depicted in dark grey. Dashed lines mark modules

needed to process or optimize key related requests to

intermediate tree nodes.

8.4.1 Data Flow

The implementation in Fig. 8 processes a typical mem-

ory request as follows. First, the CPU issues a request

on the CPU Address Port. The Request Modifier

then splits and aligns the request according to the

block size of the data (leaf) nodes. It further issues

the respective key load requests within intermediate

tree nodes. The Memory Reader fetches the required

(encrypted) data from the main memory via the

Memory Read Port. The Key Injector then inserts

the key to be used for decryption into the data stream

fetched from memory. This key might either be a root

key stored in the Secure Root, or be the result of

a previous key load request that is obtained by the

Key Processing module. The Decryption module

performs the actual decryption procedure according to

our instances in Section 7.

For key load requests, the requested key is extracted

from the decrypted data using the Key Processing

Module. For read requests, the decrypted data is fil-

tered according to the original CPU request by the

Data Filter and returned to the CPU via the CPU

Read Port by the Read Responder. To correctly han-

dle CPU read requests with wrapping burst function-

ality, the Wrap Burst Cache performs a re-ordering of

the decrypted data if necessary. For write requests, the

Data Modifier modifies the decrypted data according

to the data received from the CPU via the CPU Write

Port. This is where the actual read-modify-write proce-

dure takes place. The modified data is encrypted again

using the Encryption module and written to the main

memory via the Memory Write Port by the Memory

Writer.

To improve the performance of the Meas pipeline,

the Secure Root can implement an arbitrary number

of roots to support multiple parallel trees in memory.

Multiple roots effectively reduce both the tree height

and the memory overhead in case more secure mem-

ory is available on the secure chip. To further improve



16 Thomas Unterluggauer et al.

CPU Memory Request

Mem. Start

Block 1 Block 2

Mem. End
C

P
U

 M
em

o
ry

 L
a
y
ou

t
P

h
y
si
ca

l 
M

em
or

y

Physical block 1

Split Request

Block 3

Encrypted Block 3 TagEncrypted Block 2 TagEncrypted Block 1 TagEncrypted Block 0 Tag

Data Mem. End
Tree Start

Mem. Start

Physical block 2 Physical block 3

Block 0

Physical block 0

Fig. 7: Data node requests for 4-ary Meas.

the performance of read requests, the Meas pipeline in-

corporates a Key Cache for faster key retrieval within

the tree. For this purpose, the Cache Fetcher queries

the cache for the key requested in a key load request.

On a hit, the key load request is dropped and the key

forwarded. Otherwise, the key load request is forwarded

without modification. The Key Cache is filled using the

Cache Writer, which receives the keys to be stored in

the cache from the Key Processing module.

8.4.2 Re-Keying

Write requests in Meas require the re-keying of all

nodes on the path from the root to the respective

data leaf node. This re-keying operation takes place in

the Secure Root for the root keys themselves, and in

the Key Processing module for non-root keys stored

within the tree. In particular, besides filtering out the

decryption keys from the decrypted data in key load

requests, the Key Processing updates the respective
keys during write requests. The new key is generated

by the pseudo-random number generator PRNG. This

PRNG uses a Keccak[400] instance that is initalized with

a random secret and that securely sequeezes a secret,

pseudo random stream. The freshly generated keys are

provided to the Data Modifier to update the keys in

the respective write requests and for encryption.

9 Evaluation

Meas is a novel approach to provide authentic and con-

fidential memory with DPA protection. While there al-

ready exist several concepts for memory encryption and

authentication (cf. Section 2), all of them lack the con-

sideration of side-channel attacks.

In this section, we compare Meas with these state-

of-the-art techniques regarding security properties,

parallelizability, randomness, and memory overhead.

Our methodology to assess the memory overheads is

independent of any concrete implementation, precisely

states the asymptotic memory requirements of all

schemes, and is realistic for any real-world instance.

In addition, we evaluate the practical performance of

our Meas implementation from Section 8 compared

to TEC trees when encrypting RAM. It shows that

Meas efficiently provides first-order DPA-secure

memory encryption and authentication at roughly the

same memory overhead and performance as existing

authentication techniques, which, on the other hand,

completely lack the consideration of DPA at all.

In particular, the 4-ary instance of Meas-v2 is a

highly suitable choice for DPA-secure encryption and

authentication of RAM.

9.1 Security Properties

Comparing the contestants in Table 1 regarding

security properties shows that only Meas and TEC

trees provide both confidentiality and authenticity in
the form of spoofing, splicing and replay protection.

DPA security, on the other hand, is only featured by

Meas and Merkle trees. However, Merkle trees do not

provide confidentiality and their DPA security can be

considered a side effect. Namely, the hash functions

used in Merkle trees simply do not use any secret

material, i.e., keys or plaintexts, which is the common

target in DPA attacks.

9.2 Parallelizability

A more performance oriented feature, on which previ-

ous tree constructions typically improved on, is the abil-

ity to compute the cryptographic operations involved

in read and write operations in parallel. Having this

property is nice in theory, but is in practice not the

deciding factor to gain performance. To make use of a

scheme’s parallelism, multiple parallel implementations

of the cryptographic primitives as well as multi-port



MEAS: Memory Encryption and Authentication Secure Against Side-Channel Attacks 17

Request
Modifier

Cache
Fetcher

Secure
Root

Memory
Reader

Key
Injector

Decryption Data Filter
Wrap Burst

Cache
Read

Responder

Data
Modifier Encryption

Memory
Writer

Key
Cache

Key
Processing

Cache
Writer

CPU
Addr. Port

Memory
Write Port

CPU
Write Port

Memory
Read Port

CPU
Read Port

PRNG

Fig. 8: Meas encryption and authentication pipeline.

memory, to read and write various nodes in parallel, are

required. Since these resources are typically not avail-

able, a common, alternative approach to improve per-

formance is the excessive use of caches.

In Meas, due to the key encapsulation approach

used to achieve its DPA security, parallelizing the com-

putations within the encryption scheme is not possible.

However, this is not necessarily a problem preventing

the adoption of Meas in practice since on-chip com-

putation is very fast compared to off-chip memory ac-

cesses. Additionally, like for all authentication trees,

caches for intermediate nodes are a very effective and

important measure to reduce the average latency. In

summary, the performance of any authentication tree

(and Meas) is mainly determined by the tree height,

which depends on both the tree arity and the number

of blocks in the authenticated memory, and the cache

size. As a result, given a concrete implementation of

the cryptographic primitive, the actual runtime perfor-

mance of all authentication trees is expected to be quite

similar, which is also emphasized by the implementa-

tion results following in Section 9.6.

9.3 Memory Overhead

Table 1 further contains the memory overhead formulas

that have been derived for each scheme. These formu-

las take into account the tree arity a, and the sizes for

data blocks sb, nonces snonce, hashes shash, tags stag,

and keys skey. The overhead formulas neglect the influ-

ence of the actual number of data blocks m given that it

vanishes with rising node counts. The overheads there-

fore have to be considered as an upper bound which

gets tight with m→∞. This approach gives exact and

comparable results that are independent of the actual

implementation and that are realistic for any memory

with more than 128 data blocks.

The different parameters involved may make the

overhead comparison seem difficult at first glance. How-

ever, it gets quite simple when actual instantiations are

considered. Instantiating the trees for a fixed security

level with snonce = stag = skey and shash = 2 · stag,

for example, shows that Merkle trees, PATs, and TEC

trees have identical overhead. The overhead of Meas,

on the other hand, is even lower, especially with small

arity. This is due to the fact that in Meas only leaf

nodes are directly authenticated. On the other hand,

PATs and TEC trees directly protect the authenticity

of every tree node.

The memory overhead of Meas, PATs, Merkle

trees, and TEC trees is also visualized in Fig. 9 for

different block sizes. For practical instantiations, the

block size will be chosen according to the system

architecture, namely, page size, sector size, or cache

line size. Both the sectors of modern disks as well as

Table 1: Comparison of Meas with other constructions for scalable authentic and/or confidential memory which

offer block wise random access.

Auth. Conf. DPA Security
Parallelizablea

Memory Overhead
Read Write

Meas X X X a
a−1

· skey

sb
+

stag

sb

PAT X X X a
a−1

· stag+snonce

sb

TEC Tree X X X X a
a−1

· stag+snonce

sb

Merkle Tree X X X a
a−1

· shash

sb

a Requires multiple cryptographic implementations and multi-port memory in practice.



18 Thomas Unterluggauer et al.

1024 2048 4096 8192 16384
0

20

40

60

80

100

120

140

29

Block Size [bit]

O
v
er

h
ea

d
[%

]

Meas (1st-order DPA security)

Merkle Tree / PAT / TEC Tree

Meas (2nd-order DPA security)

Meas (3rd-order DPA security)

Fig. 9: Memory overhead comparison for 4-ary trees

depending on protection order and block size with a

security level of 128 bits (a = 4, snonce = stag = skey =

128, shash = 256).

memory pages in state-of-the-art systems are sized

4096 bytes (=32768 bits). Such large block size is out of

scope of Fig. 9 as it has negligible memory overhead in

any case. Besides, the memory overhead for a block size

of 4096 bits (sector size in older hard disks) is also very

low, e.g., 7.3% for 4-ary Meas. However, the memory

overhead of Meas for block sizes fitting nowadays

cache architectures is also practical given the security

features it provides. While today’s typical cache line

size is 512 bits, modern CPUs often come with features

such as Adjacent Cache Line Prefetch [31], which

effectively double the cache line fetches from memory

to 1024 bits. In a 4-ary Meas, for example, such block

size results in decent 29.2% memory overhead.

Note that these relatively small overheads—quite

similar to existing authentication techniques—in com-

bination with additional and exclusive DPA protection

are the main advantage of Meas. Using existing mem-

ory encryption and authentication schemes with DPA-

protected implementations, on the other hand, would

result in overheads of a factor of four to a few hun-

dred [6,10,42,45] and thus be far more expensive, even-

tually rendering memory encryption and authentication

in many applications impractical.

9.4 Memory Overhead with Masking

The memory overhead of Meas with higher-order DPA

protection additionally depends on the protection order

d and the size of the masks smask. This size smask typ-

ically equals the block size of the cryptographic prim-

itive sstate. A generalized version of the limit of the

1 2 3 4 5
0

20

40

60

80

100

120

140

Protection Order

O
v
er

h
ea

d
[%

]

binary Meas

4-ary Meas

8-ary Meas

16-ary Meas

Fig. 10: Memory overhead of Meas depending on arity

and protection order (1024-bit blocks, 128-bit security).

memory overhead as the number of memory blocks ap-

proaches infinity is:

a

a− 1
· skey + (d− 1) · smask

sb
+
stag
sb

.

In addition to the memory overhead without mask-

ing, Fig. 9 shows the memory overhead with masking

for a 4-ary tree and 128-bit security, i.e., the keys, the

tags, and the masks are sized 128 bits. It shows that

masking adds multiplicatively to the memory overhead

for all block sizes. However, for larger block sizes, the

memory overhead of Meas becomes negligible regard-

less of the protection order. Note that the protection

order stated for Meas in Fig. 9 applies to all nodes in

Meas. If however, and as explained in Section 6.4, dif-
ferent protection orders are used for nodes at different

risk, the depicted plots mark the border cases for the

actual memory overhead. For example, if low-level tree

nodes do not use masking (i.e., having first-order DPA

security) and first-order masking is applied to all other

nodes (i.e., having second-order DPA security), the ac-

tual memory overhead is lower- and upper-bounded by

the plot with first- and second-order protection, respec-

tively.

An evaluation of the memory overhead of Meas

over different protection orders and arity is depicted for

1024-bit blocks and 128-bit security in Fig. 10. Hereby,

it turns out that the memory overhead is strongly in-

fluenced by the tree’s arity leading to two main obser-

vations. First, a higher arity clearly lowers the memory

overhead, but for an arity higher than eight, the re-

duction resulting from another increase of the arity be-

comes quite small. Second, the memory overhead rises

linearly with the protection order, but the increase is

stronger the lower the tree’s arity is. This is due to the



MEAS: Memory Encryption and Authentication Secure Against Side-Channel Attacks 19

TEC
TREE

MEAS-v1
w=64bit

MEAS-v1
w=128 bit

MEAS-v2
w=64bit

MEAS-v2
w=128 bit

0

20

40

60

80
4
3

2
6

3
3

3
2

4
2

4
9

3
1 3
5

4
2

4
9

4
6

2
7 2
9

4
6

5
2

R
ea
d
B
a
n
d
w
id
th

[M
B
/
s]

Binary Tree 4-ary Tree 8-ary Tree

Fig. 11: Read performance determined with tinymem-

bench (NEON read prefetched (64 bytes step)).

masks for randomization of the plaintext being chosen

and stored for each tree node. As a result, higher arity

leads to more plaintext blocks sharing such masks in

one tree node and thus lower memory overhead due to

the masking.

9.5 Randomness

Meas consumes a considerable amount of randomness.

In particular, fresh random keys and masks must be

chosen for all nodes on the path from the root to the

leaf whenever a write operation is performed. For Meas

with protection order d, this sums up to (skey + (d −
1) · smask) · (l + 1) random bits needed on each write

operation, where l is the tree height. Implementations

of Merkle trees, PATs and TEC trees without consider-

ation of side channels however do not require any ran-

dom value if all nonces are chosen as counters. Yet, ci-

pher implementations that protect PATs and TEC trees

against side-channel attacks rely on significant amounts

of randomness too. Namely, implementations with pro-

tection order d split their state into (d+1) shares. This

demands for at least d · sstate random bits per cipher

invocation that get necessary for all accessed nodes on

both reads and writes. Contrary to that, Meas does

not require randomness during read accesses.

9.6 Implementation Results

We exensively evaluated the performance of our Meas

implementation from Section 8. In particular, we ran

both Meas-v1 and Meas-v2 on the Digilent ZedBoard

using different tree arities. As a state-of-the-art refer-

ence, we further implemented and ran a variant of TEC

trees with different arities based on the same architec-

ture as given in Fig. 8. These TEC trees use Ascon [16]

TEC
TREE

MEAS-v1
w=64bit

MEAS-v1
w=128 bit

MEAS-v2
w=64bit

MEAS-v2
w=128 bit

0

5

10

15

20

1
0

6

7

8

9

1
4

7

8

1
0 1
1

1
4

6 6

9 9

W
ri
te

B
an

d
w
id
th

[M
B
/s
]

Binary Tree 4-ary Tree 8-ary Tree

Fig. 12: Write performance determined with tinymem-

bench (NEON fill).

for authenticated encryption. For all our evaluations,

we used an unprotected implementation of Ascon that

computes three permutation rounds per cycle.

The evaluations for TEC trees were done with 64-bit

counters (nonces) and 64-bit tags, which is a common

instance for TEC trees in RAM [25]. For our evalua-

tions of Meas, we used a side-channel protection order

d = 1 and 128-bit keys. Besides, we operated Meas

with 128-bit tags as 64-bit tags only gave negligibly

better results. Another relevant evaluation parameter is

the data block size sb. A suitable choice for sb typically

is the processor’s cache line size. While the cache of the

ARM Cortex-A9 processor on the ZedBoard’s Xilinx

XC7Z020 SoC features 256-bit cache lines, we config-

ured the cache to always fetch 512-bits from memory

by enabling the double line fill feature [3]. For this rea-

son, both Meas and the TEC tree use a data block

size of sb = 512 bits. To speed up our designs, we made

use of 1024 root keys (or root nonces for TEC trees)

and a cache with 1024 slots to store keys (or nonces,

respectively).

All our implementations use the 32-bit GP0 AXI

interface to the CPU and the 64-bit HP0 AXI interface

to the memory. As a result, a natural choice for the

width w of the internal data stream that connects the

various modules in Fig. 8 is 64 bits. For the TEC tree

implementation, we hence set w = 64 bits. On the other

hand, Meas operates heavily on 128-bit keys, which

could make a 128-bit internal stream more efficient. For

this reason, we evaluated the performance impact of

the internal data stream width by running both Meas-

v1 and Meas-v2 with both w = 64 and w = 128 bit

internal stream width.

In our evaluations, we booted Linux (Xilinx Linux

kernel 4.4, tag 2016.2) [59] in encrypted and authenti-

cated memory, and measured the memory performance

using a set of benchmarks. In particular, we executed

tinymembench 0.3 [51] and LMBENCH 3.0-a9 [52] for



20 Thomas Unterluggauer et al.

TEC
TREE

MEAS-v1
w=64bit

MEAS-v1
w=128 bit

MEAS-v2
w=64bit

MEAS-v2
w=128 bit

0

1,000

2,000

3,000

1
,8
3
0

2
,9
1
3

2
,4
0
6

2
,3
0
9

1
,8
2
8

1
,4
2
6

2
,4
2
3

2
,1
7
5

1
,7
3
0

1
,3
9
6

1
,5
4
4

2
,6
6
9

2
,5
0
3

1
,5
8
1

1
,3
1
5

L
at
en
cy

[n
s]

Binary Tree 4-ary Tree 8-ary Tree

Fig. 13: Memory latency determined with LMBENCH

(lat mem rd 8M).

determining the memory bandwidth and latency, re-

spectively. We performed these benchmarks for 256 MB

of encrypted and authenticated memory provided to the

ARM CPU and an FPGA clock frequency of 50 MHz.

Note that at 50 Mhz, the 32-bit GP0 interface bounds

the achievable memory bandwidth with 200 MB/s.

9.6.1 Memory Bandwidth

Fig. 11 and Fig. 12 show the read and the write mem-

ory bandwidth for all our designs and different tree ar-

ities. As mentioned before, we compare both Meas-

v1 and Meas-v2 with 64- and 128-bit internal data

stream width to our TEC tree implementation. As ex-

pected, it shows that Meas-v2 performs clearly better

than Meas-v1 in terms of read bandwidth, yielding up

to 52 MB/s. Meas-v2 only fetches and decrypts the

actually required keys from within intermediate tree

nodes and thus allows for faster read access. On the

other hand, the write performance is generally lower

and only a little better for Meas-v2 than for Meas-

v1, because the re-keying step requires to read, modify,

and re-encrypt full intermediate nodes in Meas-v2 as

well. However, the slightly better write performance of

up to 11 MB/s is caused by ENC lacking initialization

and key derivation in Meas-v2. In terms of the inter-

nal data stream width, it shows that despite the 64-bit

memory interface, the 128-bit internal interface gives

better results for both Meas-v1 and Meas-v2. This is

mainly due to the instant availability of the 128-bit keys

from caches in the read case, and the faster processing

of decrypted keys in the write case.

In terms of tree arity, 4-ary trees give the best write

bandwidth for both Meas and the TEC tree. As a

closer investigation shows, an arity of four results in

the least amount of data being processed when access-

ing a data block. Regarding read bandwidth, 4-ary trees

give the best performance for TEC trees and Meas-v1.

TEC
TREE

MEAS-v1
w=64bit

MEAS-v1
w=128 bit

MEAS-v2
w=64bit

MEAS-v2
w=128 bit

0

10

20

30

40

4

8 8 8 9

1
9

3
0

3
0

3
3 3
5

3

6 6 6 6

U
ti
li
za
ti
o
n
[%

]

Flip Flops LUTs BRAMs

Fig. 14: FPGA utilization on XC7Z020 for 8-ary trees.

However, for Meas-v2 higher arity leads to higher read

performance, as Meas-v2 reduces the amount of data

to be read from memory during read accesses by pro-

viding direct access to the keys within intermediate tree

nodes.

9.6.2 Latency

Fig. 13 shows the latency of all our Meas designs and

the TEC tree for different arities. As the main bot-

tleneck of both memory bandwidth and latency is the

processing of all the tree nodes, our latency results be-

have quite similarly to the measured read bandwidth

in Fig. 11. In particular, Meas-v2 offers clearly better

latency than Meas-v1 across all arities, namely down

to 1315 ns (roughly 65 FPGA clock cycles), while the

TEC tree behaves quite similarly to Meas-v2. For the

TEC tree and Meas-v1, an arity of four yields the low-

est latency. However, for Meas-v2 read accesses become

faster the higher the arity is. As before, an internal data

stream sized 128 bits yields lower latency than 64-bit

streams.

9.6.3 Resource Utilization

Fig. 14 shows the utilization of flip flops, look-up ta-

bles (LUTs), and 36 KB block RAMs (BRAM) on the

XC7Z020 FPGA SoC for Meas and the TEC tree. In

total, this XC7Z020 provides 106400 flip flops, 53200

LUTs, and 140 36 KB BRAMs. As the tree arity hardly

influences hardware utilization, we focus on the results

for 8-ary trees. These results show that all designs are

dominated by logic, with an utilization of up to 35 %

of LUTs, while the demand for flip flops and BRAMs

stays below 10 %. Compared to the TEC tree, Meas

consumes 60-80% more logic, because it implements a

(tweakable) block cipher and a PRNG in addition to

the Ascon permutation.



MEAS: Memory Encryption and Authentication Secure Against Side-Channel Attacks 21

9.6.4 Discussion

Our evaluations indicate quite similar performance of

TEC trees and Meas-v2 and higher implementation

cost for Meas in general. However, our instances of

Meas use 128-bit keys and tags, while our TEC tree im-

plementation operates with smaller 64-bit nonces and

tags. Besides, our TEC tree does not offer DPA protec-

tion.

On the other hand, TEC trees equipped with

protected cryptographic implementations would suffer

from significantly lower performance than Meas.

Namely, as previous results [43] show, designing

masked cryptographic implementations with low

latency is difficult, because register stages are needed

to ensure side-channel security. For example, the

1st-order protected, round-parallel Ascon imple-

mentation from [24] requires three clock cycles per

permutation round. To illustrate the effect of such

implementation on the memory bandwidth, we inte-

grated the implementation from [24] into our pipeline

from Section 8, but omitted any efforts to generate

the 320 bits of randomness required per cycle. While

this reduced resource utilization by 25% compared to

the unprotected, unrolled implementation of Ascon

that computes three rounds per cycle, the read and

write bandwidth of the TEC tree drop to 2.6 MB/s

and 0.9 MB/s, respectively. Even when employing

Ascon to encrypt and authenticate memory without

a tree and replay protection, the bandwidth using

the 1st-order masked implementation merely reached

4.2 MB/s compared to roughly 100 MB/s [58] when

using the unprotected implementation.

Summarizing our evaluation results and especially

taking into account write performance and side-channel

constraints, we conclude that Meas-v2 with arity four

is a DPA-secure, highly practical, and hence suitable

choice to encrypt RAM. However, as 4-ary Meas-v2

encrypts four 128-bit keys per intermediate tree node

with a 64-bit cipher, 4-ary Meas-v2 relies on the as-

sumption of DPA being infeasible given eight different

encryptions per key. If DPA on such 8-limiting con-

struction is considered feasible, binary Meas-v2 and

4-ary Meas-v1 are viable alternatives with solid per-

formance results and only four and two encryptions per

key, respectively.

10 Conclusion

Authentic and encrypted memory is a requirement for

storing and processing data in hostile environments

where attackers have physical access. The consider-

ation of the imminent threat of side-channel attacks

against the involved cryptographic primitives is thus

the natural next step.

In this work, we therefore presented Meas, the first

Memory Encryption and Authentication Scheme which

is secure against DPA attacks. The scheme does not

require any DPA-protected primitive, allowing its use

in COTS systems. Moreover, Meas provides fast ran-

dom access on the configured block level and can be

adopted for all kinds of use cases including RAM and

disk encryption.

The scheme combines the concept of fresh re-keying

with authentication trees by storing the involved keys

in an encrypted tree structure. While this prevents

first-order DPA, masking of the plaintext values flex-

ibly extends the protection of Meas to higher-order

DPA if required. Compared to existing schemes,

Meas exclusively offers DPA protection by design at

roughly the same memory overhead and performance.

This is a clear benefit over state-of-the-art memory

authentication and encryption techniques, which would

face impractical implementation and runtime over-

heads for DPA-protected implementations if adapted

accordingly.

Acknowledgments

The research leading to

these results has received

funding from the Euro-

pean Research Council

(ERC) under the Euro-

pean Union’s Horizon 2020 research and innovation

programme (grant agreement No 681402). Further, this

work has been supported by the Austrian Research

Promotion Agency (FFG) under the grant number

845579 (MEMSEC).

References

1. Apple Inc. Apple Technical White Paper: Best Practices
for Deploying FileVault 2, 2012. http://docplayer.net/
281501-Best-practices-for-deploying-filevault-2.

html.
2. Apple Inc. iOS Security, 2015. https://www.apple.com/

business/docs/iOS_Security_Guide.pdf.

3. ARM. Core Link
TM

Level 2 Cache Controller L2C-310
Technical Reference Manual. ID080112.

4. R. Avanzi. The qarma block cipher family. almost
mds matrices over rings with zero divisors, nearly sym-
metric even-mansour constructions with non-involutory
central rounds, and search heuristics for low-latency s-
boxes. IACR Transactions on Symmetric Cryptology,
2017(1):4–44, 2017.

5. J. Balasch, B. Gierlichs, O. Reparaz, and I. Verbauwhede.
DPA, bitslicing and masking at 1 ghz. In Cryptographic

http://docplayer.net/281501-Best-practices-for-deploying-filevault-2.html
http://docplayer.net/281501-Best-practices-for-deploying-filevault-2.html
http://docplayer.net/281501-Best-practices-for-deploying-filevault-2.html
https://www.apple.com/business/docs/iOS_Security_Guide.pdf
https://www.apple.com/business/docs/iOS_Security_Guide.pdf


22 Thomas Unterluggauer et al.

Hardware and Embedded Systems - CHES 2015, pages
599–619, 2015.

6. S. Beläıd, V. Grosso, and F. Standaert. Masking and
leakage-resilient primitives: One, the other(s) or both?
Cryptology ePrint Archive, Report 2014/053, 2014.

7. S. Beläıd, F. D. Santis, J. Heyszl, S. Mangard, M. Med-
wed, J. Schmidt, F. Standaert, and S. Tillich. Towards
fresh re-keying with leakage-resilient PRFs: cipher design
principles and analysis. J. Cryptographic Engineering,
4(3):157–171, 2014.

8. M. Bellare and C. Namprempre. Authenticated encryp-
tion: Relations among notions and analysis of the generic
composition paradigm. J. Cryptology, 21(4):469–491,
2008.

9. G. Bertoni, J. Daemen, M. Peeters, and G. V. Ass-
che. Duplexing the sponge: Single-pass authenticated
encryption and other applications. In Selected Areas in
Cryptography - 18th International Workshop, SAC 2011,
Toronto, ON, Canada, August 11-12, 2011, Revised Se-
lected Papers, pages 320–337, 2011.

10. B. Bilgin, B. Gierlichs, S. Nikova, V. Nikov, and V. Rij-
men. A more efficient AES threshold implementation. In
Progress in Cryptology – AFRICACRYPT 2014, pages
267–284, 2014.

11. J. Borghoff, A. Canteaut, T. Güneysu, E. B. Kavun,
M. Knezevic, L. R. Knudsen, G. Leander, V. Nikov,
C. Paar, C. Rechberger, P. Rombouts, S. S. Thomsen,
and T. Yalçin. PRINCE - A low-latency block cipher for
pervasive computing applications (full version). IACR
Cryptology ePrint Archive, 2012:529, 2012.

12. S. Chari, C. S. Jutla, J. R. Rao, and P. Rohatgi. Towards
sound approaches to counteract power-analysis attacks.
In Advances in Cryptology - CRYPTO 1999, pages 398–
412, 1999.

13. S. Chari, J. R. Rao, and P. Rohatgi. Template attacks. In
Cryptographic Hardware and Embedded Systems - CHES
2002, pages 13–28, 2002.

14. C. Clavier and L. Reynaud. Improved blind side-channel
analysis by exploitation of joint distributions of leak-
ages. In Cryptographic Hardware and Embedded Systems
- CHES 2017, pages 24–44, 2017.

15. C. Dobraunig, M. Eichlseder, S. Mangard, F. Mendel,
and T. Unterluggauer. Isap - towards side-channel se-
cure authenticated encryption. IACR Transactions on
Symmetric Cryptology, 2017(1):80–105, 2017.

16. C. Dobraunig, M. Eichlseder, F. Mendel, and
M. Schläffer. Ascon v1.2. 2016.

17. R. Elbaz, D. Champagne, C. H. Gebotys, R. B. Lee,
N. R. Potlapally, and L. Torres. Hardware mechanisms
for memory authentication: A survey of existing tech-
niques and engines. Trans. Computational Science, 4:1–
22, 2009.

18. R. Elbaz, D. Champagne, R. B. Lee, L. Torres, G. Sas-
satelli, and P. Guillemin. Tec-tree: A low-cost, paral-
lelizable tree for efficient defense against memory replay
attacks. In Cryptographic Hardware and Embedded Sys-
tems - CHES 2007, pages 289–302, 2007.

19. N. Ferguson. AES-CBC + Elephant diffuser A Disk En-
cryption Algorithm for Windows Vista, Aug. 2006.

20. C. Fruhwirth. New Methods in Hard Disk Encryption,
2005.

21. O. Goldreich, S. Goldwasser, and S. Micali. How to con-
struct random functions. J. ACM, 33(4):792–807, 1986.

22. Google Inc. Android Full Disk Encryption, 2015. https:
//source.android.com/security/encryption/.

23. L. Goubin and J. Patarin. DES and differential power
analysis (the ”duplication” method). In Cryptographic

Hardware and Embedded Systems - CHES 1999, pages
158–172, 1999.

24. H. Groß and S. Mangard. Reconciling d+1 masking in
hardware and software. In Cryptographic Hardware and
Embedded Systems - CHES 2017, pages 115–136, 2017.

25. S. Gueron. A memory encryption engine suitable for
general purpose processors. IACR Cryptology ePrint
Archive, 2016:204, 2016.

26. M. Halcrow, U. Savagaonkar, T. Ts’o, and I. Muslukhov.
Ext4 Encryption Design Document. http://goo.gl/

qbcZV2.
27. W. E. Hall and C. S. Jutla. Parallelizable authentication

trees. In Selected Areas in Cryptography - SAC 2005,
pages 95–109, 2005.

28. N. Hanley, M. Tunstall, and W. P. Marnane. Unknown
plaintext template attacks. In Information Security Ap-
plications - WISA 2009, pages 148–162, 2009.

29. M. Henson and S. Taylor. Beyond full disk encryption:
Protection on security-enhanced commodity processors.
In Applied Cryptography and Network Security - ACNS
2013, pages 307–321, 2013.

30. IEEE. IEEE Standard for Cryptographic Protection of
Data on Block-Oriented Storage Devices. IEEE Std 1619-
2007, April 2008.

31. Intel Corporation. Intel R© 64 and IA-32 Architectures
Software Developer Manuals. 325462-058.

32. D. Kaplan, J. Powell, and T. Woller. AMD memory en-
cryption, 2016. http://developer.amd.com/resources/

articles-whitepapers/.
33. P. Kocher. Leak-resistant cryptographic indexed key up-

date, Mar. 25 2003. US Patent 6,539,092.
34. P. C. Kocher, J. Jaffe, and B. Jun. Differential power

analysis. In Advances in Cryptology - CRYPTO 1999,
pages 388–397, 1999.

35. Y. Linge, C. Dumas, and S. Lambert-Lacroix. Using
the joint distributions of a cryptographic function in side
channel analysis. In Constructive Side-Channel Analy-
sis and Secure Design - COSADE 2014, pages 199–213,
2014.

36. Linux Kernel Organization Inc. Linux Kernel 4.3 Source
Tree, 2015. https://git.kernel.org/cgit/linux/

kernel/git/torvalds/linux.git/log/?id=refs/tags/

v4.3.
37. J. Longo, E. D. Mulder, D. Page, and M. Tunstall. Soc it

to EM: electromagnetic side-channel attacks on a com-
plex system-on-chip. In Cryptographic Hardware and
Embedded Systems - CHES 2015, pages 620–640, 2015.

38. S. Mangard, E. Oswald, and T. Popp. Power analysis
attacks - revealing the secrets of smart cards. Springer,
2007.

39. M. Medwed, F. Standaert, J. Großschädl, and F. Regaz-
zoni. Fresh re-keying: Security against side-channel and
fault attacks for low-cost devices. In Progress in Cryp-
tology - AFRICACRYPT 2010, pages 279–296, 2010.

40. R. C. Merkle. Protocols for public key cryptosystems. In
IEEE Symposium on Security and Privacy - SP 1980,
pages 122–134, 1980.

41. T. S. Messerges. Using second-order power analysis to
attack DPA resistant software. In Cryptographic Hard-
ware and Embedded Systems - CHES 2000, pages 238–
251, 2000.

42. A. Moradi, A. Poschmann, S. Ling, C. Paar, and
H. Wang. Pushing the Limits: A Very Compact and a
Threshold Implementation of AES. In Advances in Cryp-
tology - EUROCRYPT 2011, pages 69–88, 2011.

https://source.android.com/security/encryption/
https://source.android.com/security/encryption/
http://goo.gl/qbcZV2
http://goo.gl/qbcZV2
http://developer.amd.com/resources/articles-whitepapers/
http://developer.amd.com/resources/articles-whitepapers/
 https://git.kernel.org/cgit/linux/kernel/git/torvalds/linux.git/log/?id=refs/tag s/v4.3
 https://git.kernel.org/cgit/linux/kernel/git/torvalds/linux.git/log/?id=refs/tag s/v4.3
 https://git.kernel.org/cgit/linux/kernel/git/torvalds/linux.git/log/?id=refs/tag s/v4.3


MEAS: Memory Encryption and Authentication Secure Against Side-Channel Attacks 23

43. A. Moradi and T. Schneider. Side-channel analysis
protection and low-latency in action - - case study of
PRINCE and midori -. In Advances in Cryptology - ASI-
ACRYPT 2016, pages 517–547, 2016.

44. E. Owusu, J. Guajardo, J. M. McCune, J. Newsome,
A. Perrig, and A. Vasudevan. OASIS: on achieving a
sanctuary for integrity and secrecy on untrusted plat-
forms. In Computer and Communications Security -
CCS 2013, pages 13–24, 2013.

45. O. Pereira, F. Standaert, and S. Vivek. Leakage-resilient
authentication and encryption from symmetric crypto-
graphic primitives. In Computer and Communications
Security – CCS 2015, pages 96–108, 2015.

46. K. Pietrzak. A leakage-resilient mode of operation. In Ad-
vances in Cryptology – EUROCRYPT 2009, pages 462–
482, 2009.

47. P. Rogaway. Efficient Instantiations of Tweakable Block-
ciphers and Refinements to Modes OCB and PMAC. In
Advances in Cryptology - ASIACRYPT 2004, pages 16–
31. Springer Berlin Heidelberg, 2004.

48. B. Rogers, S. Chhabra, M. Prvulovic, and D. Soli-
hin. Using Address Independent Seed Encryption and
Bonsai Merkle Trees to Make Secure Processors OS-
and Performance-Friendly. In IEEE/ACM International
Symposium on Microarchitecture - MICRO 2007, pages
183–196, Dec 2007.

49. B. Rogers, S. Chhabra, M. Prvulovic, and Y. Solihin.
Using address independent seed encryption and bon-
sai merkle trees to make secure processors OS- and
performance-friendly. In IEEE/ACM International Sym-
posium on Microarchitecture - MICRO 2007, pages 183–
196, 2007.

50. P. R. Sami Saab and C. Hampel. Side-channel protections
for cryptographic instruction set extensions. Cryptology
ePrint Archive, Report 2016/700, 2016.

51. S. Siamashka. tinymembench, 2013. (accessed 2017-03).
52. C. Staelin and L. McVoy. LMbench - Tools for Perfor-

mance Analysis, 2007. (accessed 2017-03).
53. F. Standaert, O. Pereira, Y. Yu, J. Quisquater, M. Yung,

and E. Oswald. Leakage resilient cryptography in prac-
tice. In Towards Hardware-Intrinsic Security - Founda-
tions and Practice, pages 99–134. 2010.

54. G. Suh, D. Clarke, B. Gasend, M. van Dijk, and S. De-
vadas. Efficient Memory Integrity Verification and En-
cryption for Secure Processors. In IEEE/ACM Interna-
tional Symposium on Microarchitecture - MICRO 2003,
pages 339–350, Dec 2003.

55. G. E. Suh, D. E. Clarke, B. Gassend, M. van Dijk, and
S. Devadas. AEGIS: architecture for tamper-evident and
tamper-resistant processing. In International Conference
on Supercomputing - ICS 2003, pages 160–171, 2003.

56. M. M. I. Taha and P. Schaumont. Key updating for leak-
age resiliency with application to AES modes of opera-
tion. IEEE Trans. Information Forensics and Security,
10(3):519–528, 2015.

57. T. Unterluggauer and S. Mangard. Exploiting the phys-
ical disparity: Side-channel attacks on memory encryp-
tion. In Constructive Side-Channel Analysis and Secure
Design, COSADE 2016, pages 3–18, 2016.

58. M. Werner, T. Unterluggauer, R. Schilling, D. Schaffen-
rath, and S. Mangard. Transparent memory encryption
and authentication. In Field Programmable Logic and
Applications - FPL 2017, pages 1–6, 2017.

59. Xilinx. Linux Kernel xilinx-v2016.2, 2016. (accessed
2017-03).



24 Thomas Unterluggauer et al.

A Authentication Trees

In the following we describe three prominent examples of
authentication trees, namely, Merkle trees [40], Paralleliz-
able Authentication Trees [27] (PAT), and Tamper Evident
Counter [18] (TEC) trees. Note however that there are also
hybrid variants like Bonsai Merkle trees [49], which use el-
ements from both Merkle trees and PATs. The description
assumes binary trees, the operator || denotes concatenation.

A.1 Merkle Trees [40]

Merkle trees use a hash function H to hash each of the m
memory blocks pi:

hl,i = H(pi) 0 ≤ i ≤ m− 1.

These hashes hl,i are recursively hashed together in a tree
structure and the root hash h0,0 is put on the secure chip:

hj,i = H(hj+1,2i||hj+1,2i+1) 0 ≤ i ≤
m

2l−j
− 1,

0 ≤ j ≤ l − 1.

A.2 Parallelizable Authentication Trees [27]

PATs use a nonce-based MAC and a key k to authenticate
each of the m data blocks pi using a tag tl,i:

tl,i = MAC(k;nl,i; pi) 0 ≤ i ≤ m− 1.

The nonces nl,i are recursively authenticated in a tree struc-
ture using again nonce-based MACs. While the key k and the

root nonce n0,0 must be stored on the secure chip, all other
nonces and the tags are stored publicly in off-chip memory:

tj,i = MAC(k;nj,i;nj+1,2i||nj+1,2i+1) 0 ≤ i ≤
m

2l−j
− 1,

0 ≤ j ≤ l − 1.

A.3 Tamper Evident Counter Trees [18]

While Merkle trees and PATs provide memory authentic-
ity, TEC trees additionally provide memory confidentiality.
Therefore, TEC trees use Added Rendundancy Explicit Au-
thenticity [20] (AREA) codes. Hereby, each plain memory
block pi is padded with a nonce nl,i and then encrypted with
key k using a common block cipher:

cl,i = E(k; pi||nl,i) 0 ≤ i ≤ m− 1.

For verification, a ciphertext cl,i is decrypted to p′i||n′l,i and

n′l,i compared with the original nonce nl,i. Hereby, the au-
thenticity is ensured by the diffusion of the block cipher as
it makes it hard for the adversary to modify the encrypted
nonce nl,i. The nonce nl,i is formed from the memory block
address and a counter ctrl,i [18]. The nonce counters are re-
cursively authenticated using AREA codes in a tree structure.
The key k and the root counter ctr0,0 are stored on the secure
chip:

cj,i = E(k; ctrj+1,2i||ctrj+1,2i+1||nj,i) 0 ≤ i ≤
m

2l−j
− 1,

0 ≤ j ≤ l − 1.


	Introduction
	Memory Encryption and Authentication
	Threat Model and Requirements
	Memory Encryption
	Memory Authentication

	Side-Channel Attacks
	Simple Power Analysis
	Differential Power Analysis
	Profiled Attacks
	DPA Countermeasures
	Masking
	Frequent Re-Keying


	Re-Keying for Memory Encryption
	The Re-Keying Operation
	Re-Keying and Plaintext Confidentiality

	DPA-Secure Memory Encryption and Authentication
	Construction
	Read Operation
	Write Operation

	Authenticity
	Handling corruption
	Recovering from corruption

	Side-Channel Discussion

	Higher-Order DPA Security
	Concept
	Masking Details
	Side-Channel Discussion
	Implementation Aspects

	Instantiation
	Meas-v1
	Meas-v2

	Implementation
	Platform
	Memory Layout
	Address Translation
	MEAS Pipeline
	Data Flow
	Re-Keying


	Evaluation
	Security Properties
	Parallelizability
	Memory Overhead
	Memory Overhead with Masking
	Randomness
	Implementation Results
	Memory Bandwidth
	Latency
	Resource Utilization
	Discussion


	Conclusion
	Authentication Trees
	Merkle Trees spMerkle80
	Parallelizable Authentication Trees sacryptHallJ05
	Tamper Evident Counter Trees chesElbazCLTSG07


