DESIGN, AUTOMATION & TEST IN EUROPE

19 - 23 March, 2018 - ICC : Dresden - German y

The European Event for Electronic
System Design & Test

Securing Conditional Branches in the
Presence of Fault Attacks

Robert Schilling??, Mario Werner?, Stefan Mangard?
1Graz University of Technology, 2Know-Center GmbH
March 22,2018

IAIK il Ty (Know

center

* Introduction to control-flow integrity and data protection

* Generic approach to protect conditional branches without
hardware extensions

* Protected comparison algorithms based on AN-codes
* Prototype compiler based on LLVM
e Evaluation

March 22, 2018 Robert Schilling 2

* Fault attacks can modify the code and data

e Control-flow integrity (CFl) restricts the control-flow PW check
to valid execution traces
* Data encoding to protect arithmetic /\
Enter Raise
* No protection for conditional branches SVStem\“/Alarm
* Conditional branches are critical instructions Continue

» Password checks, signature verification depend on
conditional branches

* Preferred target for fault attacks

March 22, 2018 Robert Schilling 3

Introduction to Control-Flow Integrity (CFl)

* Different CFl granularities = Instruction granularity

* Program counter dependent state S;
* Depends on the previous state
* Depends on currently executed instruction

Conditional branches are not Se
protected by means of CFl

March 22, 2018 Robert Schilling

11 S1

[2 Sy
4/13\?
[4 7
15 I8
If I‘f

A Primer to AN-Codes

* Arithmetic codes defined by: x,= A - x

* All code words are multiples of the encoding constant A
* AN-code congruence: 0 = x. mod A

e Support different arithmetic operations

3
.+r-r)

* Closed under addition/subtraction

e Adding two AN-code words results in another valid AN-code word
*Z, =X, +y.=A-x+A-y=A4-(x+y)

March 22, 2018 Robert Schilling 5

What is a Conditional Branch

1. First operation: Comparison
* Takes two inputs x, y and comparison predicate P
* Returns 1-bit signal if the comparison is true or false

2. Second operation: Branch
* Determines how to update the program counter (PC,,PC,)

Standard Compare & Branch

X *—>f 1 PC
' 1

P+#| CMP = BR -

y b PC,

--

March 22, 2018 Robert Schilling 6

Conditional Branch with CFI

* CFl introduces a program counter dependent state S
e State is different if branch is taken or not
* Decision if the branch is taken still relies on a 1-bit signal

Standard Compare & Branch

X 9 1 (PC,.S,),
p-—»{ CMP H=»{ BR
y -:—> (Pczisz)

--

March 22, 2018 Robert Schilling 7

Generic Protected Conditional Branches

* Multiple attack vectors to bypass conditional branches
1. Faulting the operands
2. Faulting the comparison
3. Faulting the branch

Standard Compare & Branch

X 9 1 (PC,.S,),
p-—»| CMP H==®»{ BR
y —:—» (Pcz’sz)

--

March 22, 2018 Robert Schilling 8

Generic Protected Conditional Branches

* Multiple attack vectors to bypass conditional branches
1. Faulting the operands = Add redundancy to x and y (AN-codes)
2. Faulting the comparison
3. Faulting the branch

Standard Compare & Branch

X 1 (PC,.S,),
p-—»| CMP H==®»{ BR
y —:—» (Pcz’sz)

March 22, 2018 Robert Schilling 9

Generic Protected Conditional Branches

* Multiple attack vectors to bypass conditional branches
1. Faulting the operands = Add redundancy to x and y (AN-codes)

2. Faulting the comparison - Encoded comparison in software
3. Faulting the branch

Standard Compare & Branch (PC..S))

Xe— Enc. | " S — T — i (P(:1 sl)

P —» - > 1 : S

y —> CMP P—| CMP |»{ BR |H+—»
c Constaiivr> :

--

March 22, 2018 Robert Schilling 10

Generic Protected Conditional Branches

* Multiple attack vectors to bypass conditional branches
1. Faulting the operands = Add redundancy to x and y (AN-codes)
2. Faulting the comparison - Encoded comparison in software
3. Faulting the branch = Link the redundant condition value with the CFI

state
X+ l Standard Compare & Branch ___ (PC,.S) l’
P —» ne. 7~ > 1 E(PCZ,Sz) (pcl’s'l)
—»| CMP P.—9| CMP [~®| BR |H——®CFiUpdate—> ,
yc Consteﬂi‘r’ ; (PC2! S 2)

--

March 22, 2018 Robert Schilling 11

Example: Protected Conditional Branch

1. Compute the encoded compare

. I1 5
Perform a standard conditional 12 s,

branch cond = EncCmp | S3
br cond = True | S4

3. Link the redundant condition value
with the CFl state

Se¢ | Update(cond) Update(cond) | Sg
Se 16 I8 Sg
S7 II Ii) So

Wrong branch and wrong condition
lead to invalid CFl state

March 22, 2018 Robert Schilling 12

Protected Comparisons with AN-Codes

* Problem:

* condition « EncodedCompare(P, x.,y.) with

condition € {Cy,C,} and
Hamming Distance = D

* Find an algorithm for all comparison predicates: <, <, >, >, =, #
* How to compute x.< y.?

March 22, 2018 Robert Schilling 13

Protected < Comparison with AN-Codes

* Step 1: Subtract x. — y,
positve if x,. = y,
Tre T e {negative ifx, <y,
* Sign bit determines the comparison 2 No redundancy

e Returns a valid AN-code word because AN-codes are closed under
subtractions

* AN-code congruence true
* How to map the sign bit to a redundant condition value?

March 22, 2018 Robert Schilling 14

Protected < Comparison with AN-Codes

* Step 2: Condition mapping

.y positve if x. = vy,
c ™ Ve negative if x, < y,

* Map the difference to redundant condition values
* Trick: Cast difference to unsigned

March 22, 2018 Robert Schilling 15

Protected < Comparison with AN-Codes

* Step 2: Condition mapping
ositve if x. >
Cx— {p ¢ = Ve

* AN-code congruence still true
*0 = (xc _yc)u mod A

* No change for positive differences due to the cast

March 22, 2018 Robert Schilling 16

Protected < Comparison with AN-Codes

* Step 2: Condition mapping

— e {negative ifx, <y,

(yc)u 232 4 (xc YC) =234+ 4- (X - y)
* AN-code congruence not true anymore
e (x; —y.)ymod A= (23*+A4 - (x —y)) mod A
N———

cancels out

=232 mod A

March 22, 2018 Robert Schilling 17

Protected < Comparison with AN-Codes

* Condition mapping
y (xc _ YC)u mod A {

e To avoid a zero condition value add a constant C

0 ifx. =y,
232 mod A ifx, <y,

March 22, 2018 Robert Schilling 18

Protected < Comparison with AN-Codes

* Condition mapping
C ifx, >y,

" (X = Ye +)y mod A {C+232 mod A ifx, <y,
e To avoid a zero condition value add a constant C

* Final algorlthm: Algorithm 1: AN-encoded < comparison.

Data: z.,y. € AN-code, 0 < C' < A,
Result: cond € {C1,Ca}.
begin
diff «— (unsigned) z. — y. + C
cond «— diff % A
end

March 22, 2018 Robert Schilling 19

Protected Comparisons with AN-Codes

* Applicable to <, >, = by
» Swapping the operands of the first subtraction
* Swapping the true and false constants

» =/+ equal comparison assembled using < and >

March 22, 2018 Robert Schilling 20

LLVM Compiler Prototype

* Annotate functions using attribute protect branches

* Transformation operates on LLVM IR and is target independent
1. Searches conditional branches
2. Slice operands
3. Transform all dependent operations into the AN-code domain
4. Insert protected comparison algorithm

* Backend links comparison with CFl mechanism

March 22, 2018 Robert Schilling 21

()
Q.
>~
ad
@)
o)
(@
.
Q.
p
9
Q.
=
@
@
=
o
—

uolIssiwg apo)

_
BuInpayas

uoI11oNnJlsuj

IEFREIES
uoI1NJISU|

s19ziwndo Y|

Source

Back End

Middle End

22

Robert Schilling

March 22, 2018

Q
Q.
>~
d
O
o
(@
p
a.
p
9
Q.
&
@)
O
=
>
—

uoISSIW3g 9p0)

BUINPaYoS
uollonJisuj

uollejuswnilsu|
14D

IEFREIES
uoI1NJISU|

U21IMS JOMOT]

139|9S JoMO

J9|dnoda(
doo

s19ziwndo Y|

Source

Back End

Middle End

23

Robert Schilling

March 22, 2018

Evaluation Setting

e ARMvV7-M instruction set simulator

e Software-centered CFl scheme
* State updates via store to the memory-

mapped CFl unit CMP
* AN-code with 6-bit Hamming distance ‘/\C‘MP
e Compare with duplication (5 times) /\ e
_ . CMP | Error [CMP
* Benchmarks: integer comparison, /
memcmp, bootloader Error

March 22, 2018 Robert Schilling 24

Benchmark CFI Duplication Prototype
abs abs +/% | abs +/%

March 22, 2018 Robert Schilling 25

Benchmark CFI Duplication Prototype
abs abs +/% | abs +/%
86

integer Size /B
compare Runtime / c 20 91 355 63 215

March 22, 2018 Robert Schilling 26

Benchmark CFI Duplication Prototype
abs abs +/% | abs +/%
86

integer Size /B
compare Runtime / c 20 91 355 63 215

March 22, 2018 Robert Schilling 27

Benchmark CFI Duplication Prototype
abs abs +/% | abs +/%

integer Size /B
compare Runtime / c 20 91 355 63 215

March 22, 2018 Robert Schilling 28

Benchmark CFI Duplication Prototype
abs abs +/% | abs +/%

integer Size /B 128 967 86 617
compare Runtime / ¢ 20 91 355 63 215
memcmp Size /B 68 272 300 276 306

Runtime /c 1689 10210 504 8905 427

March 22, 2018 Robert Schilling 29

Benchmark CFI Duplication Prototype
abs abs +/% | abs +/%

integer Size /B 128 967 86 617
compare Runtime / ¢ 20 91 355 63 215
memcmp Size /B 68 272 300 276 306
Runtime /c 1689 10210 504 8905 427
bootloader! Size/B 17252 17672 2.435
Runtime /¢ 51888k 51888k 0.001

10nly signature verification and all subsequent branches protected

March 22, 2018 Robert Schilling 30

Performance Improvements

 Better support for remainder operation
* Remainder operation assembled using UDIV and MLS
* Reduces code overhead up to 33% per comparison

 Better hardware support for CFI
* No software-based CFl state manipulation
* Combined instruction for compare, branch, and state update

March 22, 2018 Robert Schilling 31

Conclusion

* Close the gap between data protection and CFl by protecting
conditional branches

e Generic approach: Link a redundant condition with the CFl state

* Exploit arithmetic properties of AN-codes to develop redundant
comparison algorithms

* Prototype compiler based on LLVM

March 22, 2018 Robert Schilling 32

DESIGN, AUTOMATION & TEST IN EUROPE

19 - 23 March, 2018 - ICC : Dresden - German y

The European Event for Electronic
System Design & Test

Securing Conditional Branches in the
Presence of Fault Attacks

Robert Schilling??, Mario Werner?, Stefan Mangard?
1Graz University of Technology, 2Know-Center GmbH
March 22,2018

IAIK il Ty (Know

center

