
SGXIO: Generic Trusted I/O Path for Intel SGX

Samuel Weiser
Graz University of Technology, Austria
samuel.weiser@iaik.tugraz.at

Mario Werner
Graz University of Technology, Austria

mario.werner@iaik.tugraz.at

ABSTRACT
Application security traditionally strongly relies upon secu-
rity of the underlying operating system. However, operating
systems often fall victim to software attacks, compromising
security of applications as well. To overcome this dependency,
Intel introduced SGX, which allows to protect application
code against a subverted or malicious OS by running it in a
hardware-protected enclave. However, SGX lacks support for
generic trusted I/O paths to protect user input and output
between enclaves and I/O devices.

This work presents SGXIO, a generic trusted path archi-
tecture for SGX, allowing user applications to run securely
on top of an untrusted OS, while at the same time sup-
porting trusted paths to generic I/O devices. To achieve
this, SGXIO combines the benefits of SGX’s easy program-
ming model with traditional hypervisor-based trusted path
architectures. Moreover, SGXIO can tweak insecure debug
enclaves to behave like secure production enclaves. SGXIO
surpasses traditional use cases in cloud computing and makes
SGX technology usable for protecting user-centric, local ap-
plications against kernel-level keyloggers and likewise. It is
compatible to unmodified operating systems and works on a
modern commodity notebook out of the box. Hence, SGXIO
is particularly promising for the broad x86 community to
which SGX is readily available.

Keywords
Trusted Path, SGX, Software Guard Extensions, Secure
Execution, Hypervisor

1. INTRODUCTION
Software vulnerabilities are still a predominant issue for

application security. Over 2000 software vulnerabilities were
newly reported within just three months1 [38]. As distributed,
networked computing becomes omnipresent in the Internet

1This refers to the period between 02/05/2016 and
12/08/2016.

c© held by the authors (2017). This is the author’s extended version of
the work. It is intended for your personal use. Not for redistribution. The
definitive version will be published at
CODASPY’17, March 22 – 24, 2017, Scottsdale, AZ, USA
ISBN: 978-1-4503-4523-1/17/03
DOI: http://dx.doi.org/10.1145/3029806.3029822

of Things (IoT), the risk of damage even increases, allowing
remote exploits on a large scale.

A major reason for this fact is code complexity, which
makes traditional secure design paradigms like software veri-
fication or testing reach its limits. Hence, research focuses
on securing sensitive code only and executing it in archi-
tecturally isolated containers, often referred to as enclaves.
Since an enclave is protected against all non-enclave code, the
whole OS stack can safely be considered untrusted without
reducing security of the enclave.

The evolution of isolated execution is long and diverse [3,
7,8,10,11,13–15,19,21,34,41,50,52,54,60]. Intel SGX [21] de-
serves particular attention since it not only provides compre-
hensive enclave protection but is also available to the broad
Intel x86 community. SGX targets high-performance cloud
computing, where the cloud provider is entirely distrusted,
as well as Digital Rights Management (DRM).

In order to protect not only enclave execution but also
user I/O, one requires trusted paths between enclaves and
I/O devices. Currently, SGX only works with proprietary
trusted paths like Intel Protected Audio Video Path (PAVP)
which rely on the Intel Management Engine (ME) [18,47].
However, proprietary trusted paths are hard to analyze re-
garding security. Moreover, they are not generic and address
specific devices and scenarios only. Unfortunately, SGX lacks
support for generic trusted paths.

Contributions. In this work we present SGXIO, which is,
to our knowledge, the first generic trusted path architecture
for SGX. SGXIO protects secure user applications as well
as associated trusted paths against an untrusted OS. User
applications benefit from SGX protection while trusted paths
are established via a small and trusted hypervisor. To that
end, we identify and solve several challenges in linking the
security domains of SGX and the trusted hypervisor. This
allows a remote party to attest not only enclave code but also
the whole trusted path setup. Also, SGXIO allows human
end users to verify trusted paths without requiring additional
hardware. SGXIO improves upon existing generic trusted
paths for x86 systems with an easier and more intuitive
programming model. Furthermore, we show how SGXIO
can tweak debug enclaves to behave like production enclaves.
Therefore, the trusted hypervisor selectively disables enclave
debug instructions. Finally, we give a novel zero-overhead,
non-interactive key transport scheme for establishing an 128-
bit symmetric key between two local SGX enclaves.

The rest of this paper is structured as follows: Section 2
gives related work, followed by an overview of SGX in Sec-
tion 3. Section 4 discusses the threat model and challenges.

Section 5 presents our SGXIO architecture while Section 6
gives a thorough security analysis. Section 7 shows how
SGXIO can apply the debug enclave tweak. It is followed
by further considerations in Section 8 and a conclusion in
Section 9.

2. RELATED WORK
This section discusses prior work on isolated execution and

trusted paths. Specifically, we compare to ARM TrustZone,
which is ARM’s counterpart to SGX.

2.1 Isolated Execution
Traditionally, security kernels are used to achieve strong

process and resource isolation. One soon realized that secu-
rity kernels itself are the Achilles’ heel of the whole system
security and need complexity reduction. This paved the way
for microkernels, for which seL4 is a prominent example. The
developers of seL4 reduced kernel code size to 8700 lines of
C code and conducted formal verification to proof correct-
ness [28]. Even with a secure microkernel in place, designing
a fully-featured, secure OS on top of it is still an unmet
challenge [26]. Hence, one has to live with a feature-rich but
untrusted OS.

Isolating an application from such an untrusted OS is
essential for any trusted path. There exist various tech-
niques for isolated execution, which range from pure hy-
pervisor designs [10,14,19,34,52,60] over hardware-software
co-designs [8,11,50] to pure hardware extensions [3,7,13,15,21,
41,54]. SGXIO uses Intel SGX [21], which, from a functional
perspective, cumulates previous work in software isolation, at-
testation and transparent memory encryption. Others isolate
sensitive code by keeping it entirely in the CPU cache [57]
or by migrating it to system management RAM on x86 [4].
Often, dedicated security co-processors are used [48].

The Trusted Platform Module (TPM) [53] is a security
co-processor which does not directly offer software isolation
on its own. However, it can be used in conjunction with Intel
TXT [23] to set up an isolated execution environment [35].

Any communication with the untrusted OS is problematic
and needs careful validation [9,46]. Baumann et al. therefore
reduce the untrusted syscall interface to a bare minimum
and shift a whole Windows 8 library into an SGX enclave,
which tremendously increases the TCB [5].

2.2 Trusted Paths
There exist various attempts for integrating trusted paths

directly into existing commodity OSes. However, they usu-
ally suffer from a bloated TCB, covering the whole OS [16,31,
33,55]. More sound trusted paths consider the OS untrusted.
One can distinguish between generic trusted paths and spe-
cific trusted paths. Latter are limited to specific devices or
scenarios.

Generic Trusted Paths. Zhou et al. build a generic
trusted path on x86 systems in a pure hypervisor-based de-
sign [63]. They show the first comprehensive approach on
x86 systems, protecting a trusted path all the way from the
application level down to the device level. They consider PCI
device misconfiguration, DMA attacks as well as interrupt
spoofing attacks. However, pure hypervisor-based designs
come at a price. They strictly separate the untrusted stack
from the trusted one. Hence, the hypervisor is in charge of
managing all secure applications and all associated resources
itself. This includes secure process and memory manage-

ment with scheduling, verified launch and attestation. Also,
communication between both security domains might be
non-trivial due to synchronization issues or potentially mis-
matching Application Binary Interfaces (ABI). In contrast,
SGXIO uses the comparably easy programming model of
SGX enclaves, in which the untrusted OS is in charge of
managing secure enclaves. Moreover, SGX provides verified
launch and attestation out of the box.

Specific Trusted Paths. In [62] and [64], Zhou et al.
discuss a trusted path to a single USB device. Yu et al. show
how to apply the trusted path concept to GPU separation [61].
Filyanov et al. discuss a pure uni-directional trusted path
using the TPM and Intel TXT [17], which has two notable
drawbacks: First, it is limited to trusted input paths only.
Second, while waiting for secure input from the user, the OS
is suspended. In contrast, SGXIO supports full parallelism
between the untrusted OS and secure applications.

Another way of establishing a trusted path is via dedi-
cated I/O devices [43,44]. The I/O device natively supports
cryptography, which allows an application to directly open
a cryptographic channel to it. This bypasses any untrusted
software or hardware, making a trusted hypervisor unneces-
sary. However, this concept does not generalize to other I/O
devices, especially legacy devices.

Many trusted paths build on proprietary hardware and
software like Intel’s Protected Audio Video Path (PAVP)
as well as its successor, Intel Insider [30,47]. Both rely on
Intel’s proprietary Management Engine (ME). Hoekstra et al.
outline integration of PAVP in SGX applications to achieve
secure video conferencing and one-time password genera-
tion [18]. However, they do not come up with any trusted
input path solution, deferring this as future work. In [47],
Ruan describes a Protected Transaction Display (PTD) ap-
plication running on the ME, which makes use of PAVP to
securely obtain a one-time PINs from the user. However,
ME-related code is proprietary and kept under wraps. This
not only strongly limits potential use cases but also hinders
transparent security assessment.

2.3 ARM TrustZone
ARM TrustZone combines secure execution with trusted

path support. A TrustZone compatible CPU provides a se-
cure world mode, which is orthogonal to classical privilege
levels. The secure world is isolated against the normal world
and operates a whole trusted stack, including security kernel,
device drivers and applications. In addition, TrustZone is
complemented by a set of hardware modules, which allow
strong isolation of physical memory as well as peripherals.
Also, device interrupts can be directly routed into the secure
world. TrustZone can be combined with a System MMU,
similar to an IOMMU, which can prevent DMA attacks.
Thus, TrustZone not only allows isolated execution [51] but
also generic trusted paths [32], which is a significant advan-
tage over SGX. In contrast to SGX, TrustZone does not
distinguish between different secure application processes in
hardware. It requires a security kernel for secure process
isolation, management, attestation and similar.

3. SOFTWARE GUARD EXTENSIONS
Intel Software Guard Extensions (SGX) have been rolled

out with Skylake in October 2015 [29]. SGX comprises a new
set of x86 instructions, enabling user applications to declare
parts of its virtual address space as secure enclave. The

enclave can access its hosting application’s memory while
the host cannot touch enclave memory. In general, any non-
enclave access into the enclave is prohibited by the CPU. The
OS is entirely distrusted and is supervised by the CPU in all
enclave management operations. In addition, SGX encrypts
all enclave memory on the fly when written to DRAM using
a dedicated hardware encryption module. SGX provides
verified enclave launching, attestation and sealing. As such,
SGX encourages a small Trusted Computing Base (TCB),
only consisting of enclave code and the CPU itself.

In the following we outline verified enclave launch, at-
testation and sealing before discussing enclave debugging
and licensing. For more details we refer to available litera-
ture [1,2,12,18,21,22,24,25,36]. Especially dynamic enclave
page management, which is not covered here, can be looked
up in [21,36].

Verified Enclave Launch. When loading an enclave into
memory, the CPU measures its content in a chained crypto-
graphic hash log, stored in a register called MRENCLAVE. This
is comparable to a Platform Configuration Register (PCR)
in a TPM [53]. Before running the enclave, the CPU verifies
MRENCLAVE against a vendor-signed version and aborts on a
mismatch. Hence, MRENCLAVE vouches for integrity of the
enclave startup.

Attestation and Sealing. In order to assess enclave
security, SGX provides attestation mechanisms [1]. Local at-
testation enables an enclave to verify another enclave running
on the same physical CPU. Remote attestation can be used
by a remote party to check if the attested enclave is indeed
running on a genuine Intel CPU. It allows initial provisioning
of keys and secrets. This is required since enclave code is
public, not allowing to embed secrets directly in the code.
Attestation is based on a CPU-generated, signed report struc-
ture containing MRENCLAVE. The report structure is able to
hold additional user data. One can use this to authentically
exchange information between enclaves via local attestation
and agree on an encryption key, for example.

SGX also allows an enclave to obtain a sealing key which
is bound to the local CPU. SGX permits making the sealing
key dependent on MRENCLAVE. Hence, the same sealing key
can only be queried from exactly the same enclave, if loaded
correctly on the same, genuine Intel CPU. The enclave can use
the sealing key to encrypt arbitrary data for offline storage,
preserving its state among multiple system reboots.

Debugging. SGX distinguishes between debug and pro-
duction enclaves. Debug enclaves can be accessed by the OS
via EDBGRD and EDBGWR instructions while production enclaves
cannot. Moreover, debug enclaves can opt-in to ordinary x86
breakpoint handling and performance monitoring [22]. This
supports the enclave development process. In a production
setting, however, enclaves have to run in production mode to
protect against an untrusted OS. During initialization of an
enclave, one can set a debug mode flag, specifying whether
the enclave shall be run in debug or production mode. This
choice yields different MRENCLAVE values for either option,
making a debug enclave distinguishable from a production
enclave.

Enclave Licensing. SGX has a controversially discussed
”feature”, called launch enclave [6]. During enclave initializa-
tion, the CPU verifies a so-called EINITTOKEN, which contains
several enclave attributes to enforce, including the debug
mode flag. The EINITTOKEN has to be signed by a special
launch key, which is owned by so-called launch enclaves, is-

sued by Intel. Hence, by issuing proper launch enclaves, Intel
has full control over which enclaves are to be executed in
debug or production mode. The SGX evaluation SDK is
shipped with a launch enclave issuing EINITTOKENs for debug
enclaves only [25]. In order to run an enclave in production
mode, one needs to obtain a proper license from Intel [27].

4. THREAT MODEL AND CHALLENGES
SGXIO utilizes SGX as one building block to provide

isolated execution. However, the threat models of pure SGX
and SGXIO differ. This section elaborates on the threat
model of SGXIO and shows that, in contrast to pure SGX,
physical attacks don’t have to be considered for trusted paths.
Furthermore, the challenges arising from the combination of
SGX with a trusted hypervisor are discussed.

4.1 Distinction from SGX
SGX has been designed as isolated execution technology

with a minimal trusted computing base (TCB). The TCB
only contains the processor itself, which acts as trust anchor,
and the code running within enclaves. Everything else is
considered potentially malicious. This not only includes all
other software components (e.g., OS, hypervisor) but also
the hardware environment it operates in. Therefore, SGX
not only considers logical attacks but also physical attacks.

This threat model perfectly fits the requirements for se-
cure cloud computing in which a customer wants to protect
enclave code and data against an untrusted cloud provider,
controlling the software stack and the hardware. In this use
case, all communication with an enclave can be performed
using securely encrypted and authenticated channels. Also,
content providers can use SGX to enforce a DRM scheme on
an untrusted consumer PC.

In a local setting, however, a user wants to benefit from
SGX by protecting user-centric applications against a po-
tentially compromised OS. Especially, the communication
between user apps and the user via I/O peripherals needs
protection from the OS via a trusted path. This setting some-
how contradicts the threat model of SGX, which considers
the physical environment, and therefore also the local user,
a threat. Currently, in order to achieve a trusted path with
SGX, one has to rely on encrypted interfaces like PAVP. How-
ever, the prevalence of unencrypted I/O devices in todays
computers and the lack of support to securely communicate
with these devices demands other, more generic mechanisms.

SGXIO fixes this shortcoming by extending SGX with
a generic trusted path. Many user-centric applications can
profit from this additional feature. This covers pure local
applications like confidential document viewers, anti-spoofing
password prompts, secure password generators and password
safes but also internet scenarios like secure conferencing and
chat applications as well as secure online banking. To take
latter as example, online banking can not only be secured up
to the user’s browser via TLS, for example, but up to the I/O
devices via trusted paths, as depicted in Figure 1. Moreover,
SGXIO allows both the user and the online bank to verify
the trusted path. This means that sensitive information
like login credentials, the account balance, or the transaction
amount can be protected even if other software running on the
user’s computer, including the OS, is infected by malware.
Additionally, SGXIO provides attestation mechanisms to
enable the bank as well as the user to verify that trusted
paths are established and functional.

Figure 1: In an online banking scenario, malware
shall not be able to hijack a banking session. Com-
munication with the bank is encrypted via TLS,
while the banking app itself is protected with SGX.
Both the user and the bank want to be able to verify
security of the trusted path.

Having a trusted path has implications on the threat model
of SGXIO. A physical attacker has direct access to I/O
devices and can impersonate the user without subverting
trusted paths. Thus, trusted paths can only protect against
logical attacks but cannot provide physical security at all.
The following section explains the threat model of SGXIO
in detail.

4.2 Threat Model
In general, the adversaries attacking SGXIO attempt to

subvert a trusted path between a user app and an I/O device.
Subsequently, they succeed if they are able to break the
confidentiality or authenticity of such a trusted path.

Logical attacks are the main concern of SGXIO. Attack-
ers are assumed to have full control over the OS and know
the whole software configuration including all enclave code.
This is a realistic scenario, addressing both local and remote
software attacks which might even yield kernel privileges to
attackers. Attackers can therefore directly attack enclave
interfaces visible to the OS by running enclaves in a fake
environment within the OS. Also, attackers can dynamically
load and execute custom user apps and drivers and open
other trusted path sessions.

Moreover, indirect attacks on a trusted path can be per-
formed by misconfiguring devices under OS control, as out-
lined by Zhou et al. [63]. The idea of such attacks is to
manipulate noninvolved devices to interfere with a trusted
path. For example, a PCI devices could be configured such
that its address range overlaps those of the user device. Also,
malicious Direct Memory Access (DMA) requests could be
issued and interrupts could be spoofed.

All code in the trusted computing base (e.g., secure user ap-
plications, secure I/O drivers and the hypervisor) is assumed
to be correct and not vulnerable to logical attacks. Using a
formally verified hypervisor such as seL4 [28] supports this
assumption.

Physical attacks are not considered in SGXIO, as already
explained, since the user interacting with the system has to
be trusted anyway. As with SGX, Denial-of-Service (DoS) as
well as side channel attacks are also out of scope for SGXIO.

Note that SGXIO requires a modern Intel platform with
SGX support as well as support for TPM-based trusted boot.
All hardware (CPU, chipset, peripherals) is expected to work
correctly.

4.3 Challenges
SGXIO combines SGX with a trusted hypervisor to provide

a generic trusted path. However, the hypervisor and SGX
form two disjoint security domains with two different trust
anchors, which are not designed to collaborate. Subsequently,
connecting both domains is a non-trivial task.

This essentially breaks down to two major challenges which
had to be solved: First, the security domains of the hypervisor
and SGX enclaves have to be linked. More concretely, we
need a way for SGX enclaves to check the presence and
the authenticity of the hypervisor. We name this problem
hypervisor attestation. Once the hypervisor is attested, it
extends trust to any trusted path it establishes.

Second, the SGXIO architecture relies on multiple SGX
enclaves which communicate using keys based on local attes-
tation, as discussed in the following sections. These enclaves
are executed in different security contexts (trusted hypervisor
vs. untrusted OS). However, in SGX enclaves are unaware
of their context, making them vulnerable to enclave virtual-
ization attacks. SGXIO prevents such attacks via a careful
interface design between both contexts.

5. SGXIO ARCHITECTURE
This section presents our SGXIO architecture and elabo-

rate on its isolation guarantees. We discuss design of secure
user applications, secure I/O drivers as well as the hypervisor.

5.1 Architecture
SGXIO is composed of two parts: a trusted stack and a

Virtual Machine (VM), as seen in Figure 2. The trusted stack
contains a small security hypervisor, one or more secure I/O
drivers, which we simply call drivers, as well as a Trusted
Boot (TB) enclave. The VM hosts an untrusted commodity
OS like Linux, which runs secure user applications, also
abbreviated with user apps.

User apps want to communicate securely with the end user.
They open an encrypted communication channel to a secure
I/O driver to tunnel through the untrusted OS. The driver
in turn requires secure communication with a generic user
I/O device, which we term user device. To achieve this, the
hypervisor exclusively binds user devices to the corresponding
drivers. Note that any other device is directly assigned to
the VM. I/O on those unprotected devices directly passes
through the hypervisor without performance penalty. The
trusted path names both, the encrypted user-app-to-driver
communication and the exclusive driver-to-device binding.
It is indicated with a solid line in Figure 2. Drivers use the
TB enclave to get assured of correct trusted path setup by
attesting the hypervisor, which is indicated by a dotted line.

5.2 Isolation Guarantees
SGXIO establishes a trusted path all the way from a user

app to the user device. This requires isolation on several
layers. First, all trusted stack memory needs to be isolated
from the untrusted OS and Direct Memory Access (DMA).
Second, the trusted path itself requires isolation from the OS.
Third, the user device needs isolation from all other devices
which are under control of the OS. This section outlines how
SGXIO meets these isolation requirements.

Trusted Memory Isolation is a prerequisite for securely
executing trusted code in an untrusted environment. This
affects user apps as well as the trusted stack. To achieve

Figure 2: The trusted stack consists of a hypervi-
sor (HV), a Trusted Boot (TB) enclave and one or
more secure I/O drivers. The Virtual Machine (VM)
operates an untrusted OS on which secure user apps
are hosted. The driver obtains data from the user
device (thin line) and encrypts it (bold line) for a
user app, providing a trusted path (solid line). The
TB enclave allows drivers to attest the hypervisor.

memory isolation of the user app, it is executed within an
enclave. SGX isolates all enclave memory from the untrusted
OS. To achieve memory isolation for the trusted stack, the
hypervisor confines the untrusted OS in a VM. Moreover,
the hypervisor implements a strict memory partitioning by
configuring the Memory Management Unit (MMU) appro-
priately. This prevents the OS from escaping the VM and
tampering with the trusted stack.

Direct Memory Access (DMA) is a more subtle threat
to memory isolation [63]. A DMA-capable device can di-
rectly access memory, bypassing any MMU protection and
potentially violating integrity and confidentiality of trusted
memory. SGX prevents DMA from accessing enclave mem-
ory, hence the user app is safe against DMA attacks [21].
Likewise, the trusted stack has to be protected against such
attacks. Modern chipsets typically incorporate an I/O Mem-
ory Management Unit (IOMMU), also termed VT-d on Intel
systems. The IOMMU restricts device DMA to specific por-
tions of RAM only. By properly configuring the IOMMU,
the hypervisor can protect the whole trusted stack against
device DMA attacks.

Trusted Path Isolation. The trusted path has to be
protected on two layers, namely the communication between
user app and driver as well as the interaction between driver
and user device. The user app communicates with the driver
via the untrusted OS stack, hence encryption is necessary.
The interaction between driver and user device is protected
by the hypervisor. Therefore, the hypervisor establishes an
exclusive binding between a driver and the corresponding
user device. Moreover, the hypervisor mutually isolates all
drivers. Thus, an attacker, loading arbitrary driver code at
will, cannot interfere with trusted paths established by other
drivers.

User Device Isolation. As outlined before, a malicious
OS could misconfigure devices to interfere with the trusted

path. In that way, OS-controlled PCI devices could be forced
to overlap their MMIO region or I/O port range with those
of the user device or issue forged interrupts on behalf of
the user device. To protect against these attacks, Zhou et
al. implement several policies in the hypervisor to detect
and prevent malicious device configurations. This effectively
isolates a user device from other OS-controlled devices. Their
approach is also applicable to SGXIO.

5.3 User App Design
Secure user applications play a central role in concrete

use case scenarios like secure online banking. This section
outlines principles for designing user apps and shows how
user apps securely communicate with drivers. In the end, we
elaborate on the enclave programming model.

Design Principles. Key to any secure user-centric ap-
plication is a trusted path which protects user I/O against
advanced malware like keyloggers and likewise. Without
trusted path, an attacker could impersonate the user and act
on its behalf, even if the user app itself is not compromised.
To provide its service, a user app might communicate with
other user apps or exchange sensitive data with a remote
server using TLS, for example. Any operation on sensitive
data is carried out within an enclave. Unproblematic code
is kept outside the enclave. This covers glue code to the
OS and untrusted libraries like file management, network
socket access and likewise. All interaction with untrusted
code needs careful validation inside the enclave [5,9,46]. To
keep state among multiple invocations, the user app can
encrypt sensitive data for offline storage using SGX sealing,
for example.

Encrypted Channel. To open a trusted path, the user
app sets up an encrypted channel to a secure I/O driver.
An encrypted channel protects sensitive user I/O against
the untrusted OS. To open such a channel, the user app
needs to share an encryption key with the driver via some
form of key exchange. SGX local attestation can assist in
key exchange by providing means to authentically exchange
information between user app enclaves and driver enclaves.
A straight-forward implementation uses Diffie-Hellman key
exchange, as suggested by [1,25]. However, local attestation
inherently provides a much faster way of exchanging key
material. We give a novel, lightweight key transport scheme,
which comes with just a single uni-directional invocation of
local attestation. We reuse the already pre-shared report key
to derive random 128-bit encryption keys. The scheme works
as follows: The user enclave generates a local attestation
report over a random salt, targeted at the driver enclave.
However, instead of delivering the actual report to the driver
enclave, the user enclave keeps it private and uses the report’s
MAC as symmetric key. It then sends the salt and its identity
to the driver enclave, which can recompute the MAC to
obtain the same key. Details of this scheme are given in the
Appendix.

Once a key is established, one can use any authenticated
encryption to ensure confidentiality and integrity of the data
stream between user app and driver. Use of an authenticated
encryption scheme ensures confidentiality and integrity of the
data stream. By doing key exchange via SGX local attesta-
tion, the user app and the driver can mutually authenticate
each other. This is also referred to as origin integrity.

Enclave Programming Model. SGXIO benefits from
SGX’s easy enclave programming model [2,24]. User app

enclaves are executed directly on a host application running
within the untrusted OS. Hence, secure user applications are
treated similar to ordinary application processes. The OS has
control over memory management, process management and
scheduling of enclaves, although SGX carefully validates any
action that might affect enclave security. Also, integration of
multiple enclaves into a bigger user application stack is easy
since enclaves share parts of the register set and the virtual
address space with their host for communication purposes.
Moreover, SGX supports multithreading as well as enclave
debugging. Also, SGX natively provides verified launch and
attestation of enclaves, which is tedious to implement in
software. To support enclave development, Intel provides
a software development kit [25] as well as a comprehensive
enclave developer guide [24].

5.4 Driver Design
Secure I/O drivers are responsible for connecting user apps

and user devices. Drivers are hosted and protected by the
hypervisor. Although hypervisor protection is sufficient to
isolate drivers from the untrusted OS, actual driver logic
is in addition executed in an enclave. This helps in setting
up an encrypted communication channel with user apps,
as previously described. Also, driver enclaves are subject
to attestation, allowing identification via their MRENCLAVE

values.
When designing a driver one has to make certain design

choices. We opt for two strategies, namely domain multiplex-
ing and portability, targeting commodity operating systems.
Note that SGXIO supports other choices as well. Domain
multiplexing allows the same driver and thus the same user de-
vice to be shared across security domains. Portability refers
to drivers being compatible to different operating systems.

Domain Multiplexing. A driver handles the data stream
from and to a user device and forwards it to the OS or a user
app, respectively. Since many user devices like human inter-
face devices or graphic cards are potentially shared between
the untrusted OS and user apps, the driver has to multiplex
the data stream between those security domains. In our
example (see Figure 2), the driver offers its service to the OS
via two separate virtual devices. During normal operation,
the driver simply routes the unmodified data stream to the
first virtual device, which matches the device class of the
user device. This gives the OS transparent access to the user
device. If the user app requests a trusted path, the driver
redirects all traffic to the second virtual device, however in
an encrypted fashion. The user app, knowing the proper de-
cryption key, can access this second virtual device to tunnel
through the untrusted OS. This second virtual device can
be any standard character device, for example, which just
forwards the encrypted data stream. In this example, the
driver implements strict temporal multiplexing between the
OS and the user app. However, one could enforce arbitrary
security policies. For example, the driver could implement
spatial partitioning of a graphic card’s frame buffer to allow
secure screen overlays. Or it could intercept and mask certain
keystrokes to react on secure attention sequences [44] and
encrypt password entry, for example.

Portability. In our example we encourage virtual de-
vices as communication interface between drivers and the
OS, cf. Figure 2. This has the advantage of being completely
compatible to commodity OSes. No changes to the OS are
required since a user device is perfectly emulated by the

driver. Also, since the driver has no notion of which OS it
is serving, one and the same driver implementation can be
reused across multiple different OSes without porting effort.
Saved manpower can be put in a robust driver implementa-
tions. Note that specific high-throughput user devices might
need cooperation by the OS, breaking full portability.

5.5 Hypervisor Design
The hypervisor is responsible for running the untrusted OS

in a VM as well as loading drivers and binding user devices to
them. Drivers can be statically loaded by the hypervisor on
system boot. This makes sense for permanently installed user
devices like notebook keyboards and graphic cards. Drivers
for plug-and-play devices like USB might be dynamically
loaded by the hypervisor. Note that typically the hypervisor
delegates such resource manangement tasks to a separate
Virtual Machine Monitor (VMM).

The hypervisor enforces a bunch of isolation guarantees,
as previously outlined: First, it isolates all trusted stack
memory. Second, it binds a user device exclusively to the
corresponding driver and mutually isolates drivers. This
achieves trusted path isolation. Third, it isolates user devices
from malicious interference with other devices.

seL4. Choice of an appropriate hypervisor fulfilling these
requirements is crucial for overall system’s security. We
recommend to use seL4 as hypervisor, as it allows a straight
forward design of SGXIO. seL4 implements a strict resource
partitioning, which directly supports isolation of trusted
memory as well as user device binding. Therefore, seL4 knows
capabilities for each resource [39]. By granting the VM or a
driver specific capabilities, it gets access to the underlying
resources. With such a capability system in place, isolation
breaks down to a correct distribution of memory and device
capabilities among the VM and the drivers. For example,
the VM as well as each driver gets assigned a disjoint set of
memory capabilities, enforcing memory isolation. Likewise,
each driver gets capabilities to its own user device only.
Capabilities to other devices are given to the VM. This
enforces trusted path isolation.

To enforce its capability system, seL4 makes heavy use of
Intel’s VT-x hardware virtualization. Each illegitimate mem-
ory or device access, be it via ordinary memory addressing,
Memory-Mapped I/O (MMIO) or I/O ports, is intercepted
by means of VT-x. In the same way, VT-x helps in block-
ing device misconfiguration attacks [63] and achieving user
device isolation. Furthermore, seL4 uses Intel VT-d, also
referred to as IOMMU, to protect against DMA attacks from
misconfigured devices. Thus, seL4 is perfectly suitable to
implement all of the above isolation guarantees.

Moreover, seL4 is formally verified [28,37]. The proofs not
only cover functional correctness of the generic C implemen-
tation but also help finding a correct kernel configuration
under which isolation guarantees hold. The developers of
seL4 claim to have the first general-purpose microkernel with
such strong guarantees. Although initial proofs were con-
ducted for the ARM architecture, most verified, generic code
is shared with x86.

As with seL4, XMHF aims at strong memory isolation,
backed by formal proofs [56]. Using a formally verified hy-
pervisor like seL4 or XMHF has several advantages. The
hypervisor is essential part of the TCB, responsible for es-
tablishing the generic trusted path. The formal proofs help
making strong claims about security of the trusted path,

which is not the case when relying on a best-effort implemen-
tation without such proofs. Once the hypervisor is considered
trustworthy, subsequent reasoning can concentrate on single
code modules like drivers rather than the whole system.

6. DOMAIN BINDING
This section elaborates on challenges which arise when

binding the SGX domain with the trusted hypervisor do-
main. Specifically, this covers trusted boot and hypervisor
attestation. We discuss how to protect hypervisor attestation
against remote TPM attacks as well as enclave virtualization
attacks. Having a domain binding in place allows remote
attestation of trusted paths as well as user verification.

6.1 Challenges
SGXIO enables a remote party as well as a local user to ver-

ify security of trusted paths. In the first place, this requires a
domain binding between SGX and the trusted hypervisor. In
the second place, an appropriate user verification mechanism
needs to be in place which is both secure and usable.

Domain Binding. In order to bind the SGX and the
hypervisor domain, the hypervisor must level up to certain se-
curity guarantees SGX regarding isolated code execution. In
SGX, all enclave memory is isolated from the rest. Moreover
enclave loading is guarded by a verified launch mechanism,
which can be attested to other parties. SGXIO rebuilds
similar mechanisms for the hypervisor. Isolation of trusted
memory has already been discussed in Section 5.2. Verified
launch is implemented via trusted boot of the hypervisor with
support for hypervisor attestation.

With trusted boot and hypervisor attestation in place,
SGXIO can bind the SGX and the hypervisor domain. The
binding needs to be bidirectional, allowing both the hypervi-
sor and SGX enclaves to put trust in the other domain. One
direction is easy: The hypervisor can extend trust to SGX by
running enclaves in a safe, hypervisor-protected environment.
These enclaves can in turn use local attestation to extend
trust to any other enclaves in the system. However, the oppo-
site direction is challenging: On the one hand, enclaves need
confidence that the hypervisor is not compromised and binds
user devices correctly to drivers. Effectively, this requires
enclaves to invoke hypervisor attestation. SGXIO achieves
this with assistance of the TB enclave. On the other hand,
SGX is not designed to cooperate with a trusted hypervisor.
Recall that SGX considers all non-enclave code untrusted.
In fact, SGX explicitly prohibits use of any instruction inside
an enclave that might be used to communicate with the
hypervisor [24]. Even if hypervisor attestation succeeds, an
enclave cannot easily learn whether it is legitimately exe-
cuted by the hypervisor or virtualized by an attacker in a
fake environment. This makes driver enclaves and the TB
enclave vulnerable to virtualization attacks. SGXIO defends
against such attacks by hiding hypervisor attestation from
the untrusted OS.

User Verification. An end user wants to be able to verify
if he is indeed communicating with the correct user app via
a trusted path. This is non-trivial because the user cannot
simply evaluate an cryptographic attestation report. Instead,
the user requires some form of notification whether a trusted
path is present. This notification needs to be unforgeable to
prevent the OS from faking it. Moreover, it needs to help
the user distinguish different user apps, not least because an
attacker might also run arbitrary user apps under his control.

6.2 Trusted Boot & Hypervisor Attestation
Trusted boot allows verifying integrity of the hypervisor

by doing a measured launch over all booted code. Without
it, malware could silently hook into the boot process and
disable any protection offered by the hypervisor. In contrast
to verified launch, measured launch does not prohibit booting
a compromised hypervisor but records it for later evaluation.

Trusted boot makes use of a TPM to measure the whole
boot process, starting from a trusted piece of firmware code
up to the hypervisor image. During a normal boot, each boot
stage measures the next one in a cryptographic log inside
the TPM using the extend operation. All measurements are
cumulated in a TPM Platform Configuration Register (PCR).
The final PCR value reflects the whole boot process. If any
boot stage deviates from the normal boot process, the PCR
will contain a wrong value.

Hypervisor Attestation allows enclaves to verify the
trusted boot process in order to get assured of hypervisor’s
integrity. Since the hypervisor is responsible for loading
drivers and doing trusted path setup, its attestation also
vouches for security of all trusted paths.

To ease hypervisor attestation, SGXIO uses a Trusted
Boot (TB) enclave which attests the hypervisor once. After-
wards, any driver enclave running on the system can query
the TB enclave to get approval if hypervisor attestation
succeeded, see Figure 3/I. The driver enclaves in turn can
communicate the attestation result to user apps, which can
finally implement a mechanism for remote parties or the end
user to verify a trusted path.

To attest the hypervisor, the TB enclave needs to verify
the PCR value, obtained during trusted boot. Therefore,
the TB enclave requests a TPM quote [53], which contains a
cryptographic signature over the PCR value alongside with
a fresh nonce. This ensures not only integrity of the PCR
value but also prevents replay attacks.

6.3 Attacks
The interaction between TB enclave and TPM is crucial

for security of the hypervisor attestation scheme. One has to
prevent remote TPM attacks as well as enclave virtualization
attacks, which is outlined in the following.

6.3.1 Remote TPM attacks.
If the TB enclave does not identify the TPM it is talk-

ing to, hypervisor attestation becomes vulnerable to remote
TPM attacks, also called cuckoo attacks [42]. If the attacker
compromises the hypervisor image, the PCR will yield a
wrong value during trusted boot, which is detected by the
TB enclave. However, the attacker can make hypervisor at-
testation work again by diverting TB enclave communication
to an attacker-controlled TPM. Since the attacker can feed
the remote TPM at will to generate a valid quote, the TB
enclave successfully approves the compromised hypervisor.
See also Figure 3/II.

Defense. In order to stop cuckoo attacks, the TB enclave
needs to be bound to a particular computer. In other words,
the TB enclave needs a-priori knowledge of the TPM, e.g., in
form of the TPM’s Attestation Identity Key (AIK) used for
signing the quote. This allows the TB enclave to verify the
origin of the TPM quote. To make the AIK known to the
TB enclave, one has to provision it to the TB enclave, e.g.,
during initial system integration. The TB enclave stores the
provisioned AIK together with some redundancy by means

Figure 3: I) During trusted boot, Firmware (FW) measures the Hypervisor (HV) via a TPM. The TB enclave
attests the hypervisor via a TPM quote and in case of success, approves other drivers (DX) and (DY). II) An
attacker injects a remotely-generated TPM quote to hide the presence of a Compromised Hypervisor (CHV).
IIIa) An attacker diverts steps 3 or 4 to a virtualized environment. IIIb) This allows to virtualize a trusted
path to a user app (UA).

of SGX sealing. On hypervisor attestation, the TB enclave
unseals the AIK and uses it to verify the quote. Redundancy
helps in verifying integrity of the unsealed AIK. Since sealing
uses a CPU-specific encryption key, an attacker cannot trick
the TB enclave to unseal an AIK not sealed by the same
CPU. This effectively binds execution of the TB enclave to
the TPM.

Provisioning of AIKs could be done by system integrators.
One has to introduce proper measures to prevent attackers
from provisioning arbitrary AIKs. For example, the TB
enclave could encode a list of public keys of approved system
integrators, which are allowed to provision AIKs.

6.3.2 Enclave Virtualization Attacks
SGX is not designed to cooperate with a trusted hypervisor,

making driver enclaves as well as the TB enclave vulnerable
to enclave virtualization attacks. In an enclave virtualization
attack, the attacker does not compromise the actual trusted
boot process. Rather, he virtualizes driver enclaves or even
the TB enclave in a fake environment on the same computer,
as depicted in Figure 3/IIIa. To make hypervisor attesta-
tion for the virtualized enclaves succeed, the attacker diverts
the legitimate TPM quote or the TB enclave approval to
the virtualized TB enclave or driver enclaves, respectively.
As shown in Figure 3/IIIb, the attacker can now imperson-
ate the user by rerouting user apps to a virtualized driver,
reading driver’s output and providing fake input. Note that
the attacker did not change enclave code. Hence, SGX will
generate the same MRENCLAVE value and thus the same de-
rived cryptographic keys for both, legitimate and virtualized
enclave instances. Neither the TB enclave nor the driver
enclave or a user app can detect such virtualization. How-
ever, the attacker does not learn actual user input, which
still arrives at the legitimate driver enclave.

Defense. The problem of enclave virtualization stems
from the design of SGX which treats all enclaves equally,
regardless of the security context they are executed in. As
a defense, SGXIO restricts the communication interface be-
tween the hypervisor and the OS context. Therefore, the
hypervisor hides the TPM as well as the TB enclave from
the untrusted OS2. Only the legitimate TB enclave is given
access to the TPM. Thus, the TB enclave might only succeed

2This breaks path 3 on the left and path 4 on the right side
of Figure 3/IIIa, respectively.

Figure 4: Trust hierarchy of SGXIO.

in hypervisor attestation if it has been legitimately launched
by the hypervisor. Likewise, only legitimate driver enclaves
are granted access to the legitimate TB enclave by the hyper-
visor. A driver enclave might only get approval if it can talk
to the legitimate TB enclave, which implies that the driver
enclave too has been legitimately launched by the hypervisor.

Note that user app enclaves are not subject to enclave
virtualization attacks since they are already running in the
OS context and do notexchange sensitive plain data with
their untrusted environment.

6.4 Remote Trusted Path Attestation
As already mentioned, hypervisor attestation vouches for

security of trusted paths and serves as basis for remote
attestation. This section describes the whole trust hierarchy
involved in remote attestation, as shown in Figure 4.

SGXIO has two main hardware trust anchors, namely SGX
and the TPM. SGX extends trust to all enclaves running on
the system by means of verified launch. This also includes
enclaves with attacker-controlled code (Attk.). It is up to
a remote verifier and individual enclaves to build a trust
hierarchy among ”good” enclaves. To do this, trust is ex-
tended via SGX remote and local attestation, respectively.
The entrusting party does not only verify validity of an SGX
attestation report but also check for a correct MRENCLAVE

value, which uniquely identifies an enclave codebase.
In a typical scenario, a remote verifier wants to establish a

trusted path to a user. It therefore extends trust to a specific
user app (UA) under its control, which in turn entrusts

appropriate secure I/O drivers (Drv). Drivers extend trust
to the TB enclave, which does hypervisor attestation as
previously outlined. If hypervisor attestation succeeds, trust
is implicitly extended to the TB host and all driver host
processes together with all trusted paths to user devices.
If at any point in the trust hierarchy attestation fails, the
affected entities will terminate trusted path attestation.

6.5 User Verification
SGXIO allows a user to locally assess if he is talking with

the correct user app via a trusted path. This does not require
additional hardware such as an external handheld verification
device [63] or similar. Instead, we stick to sharing a secret
piece of information between user and user app, similar to [58].
For the sake of simplicity we discuss the common scenario of
a trusted screen path and a trusted keyboard path. When
the user starts the user app, the user app requests a trusted
input path to the keyboard and a trusted output path to
the screen from the corresponding drivers. If for any reason
one or both trusted path setups fail, the user app terminates
with an error. In the case of success, the user app displays
the pre-shared secret information via the screen driver to
the user. The user verifies this information to get assured
of a valid trusted path setup for this user app. Since an
attacker does not know the secret information, he cannot
fake this notification. This approach requires provisioning
secret information to a user app, which seals it for later usage.
Provisioning could be done once at installation time in a safe
environment, e.g. with assistance of the hypervisor, or at any
time via SGX’s remote attestation feature.

7. TWEAKING DEBUG ENCLAVES
Our architecture makes heavy use of SGX enclaves. In

order to enable full security of production enclaves, SGX
enforces a licensing scheme on enclave code, which might
be too costly for small business or even incompatible with
the open-source idea. In this section we show how to level
up debug enclaves to behave like production enclaves in the
threat model of SGXIO. This requires special handling of
SGX remote attestation and sealing. Note that the debug
tweak does not apply to a secure cloud computing scenario
with an untrusted cloud provider.

Recall that the only difference between debug and pro-
duction enclaves is the presence of SGX debug instructions,
which we aim to disable manually. The debug tweak lever-
ages SGX’s support for VT-x instruction interception. VT-x
supports several configurable bitmaps, making certain in-
structions trap into the hypervisor when executed from with-
ing a VM. These bitmaps are configured by the hypervisor
via so-called Virtual Machine Control Structures (VMCS).
With the release of SGX, Intel added a new bitmap for SGX
ENCLS instructions, called ENCLS-exiting bitmap. This
allows the hypervisor to selectively intercept ENCLS instruc-
tions. Thus, the hypervisor can intercept all EDBGRD and
EDBGWR instructions which are ever executed from within a
VM, by just configuring the VMCS bitmaps accordingly. By
doing so, the only code which is able to debug enclaves is
the trusted hypervisor itself. Since the hypervisor is trusted,
we can consider SGX debugging features as disabled. Hence,
we have effectively turned all debug enclaves inside the VM
into production equivalents.

Tweaked Cloud Enclaves. As already mentioned, this
tweak only applies to a setting similar to SGXIO, where a

trusted hypervisor is present. In general, this is not the case
for cloud scenarios where the cloud provider is untrusted
and expected to subvert the hypervisor. In such cases, one
has to opt for real production enclaves. Nevertheless, honest
server administrators could use the tweak to obtain SGX
protection without licensing. This would help in strongly
isolating server code and reducing the TCB from the whole
system down to the hypervisor and the enclave code.

Remote Attestation. With tweaked debug enclaves,
remote attestation requires special care since a remote verifier
cannot easily determine whether the debug tweak is correctly
enabled or not. For example, an attacker could compromise
the hypervisor and manipulate (debug) the TB enclave to
issue wrong approvals. Next, the attacker could stealthily
debug all enclaves on the system.

To do remote attestation with tweaked debug enclaves,
one can run only the TB enclave in production mode and do
remote attestation towards it. Once a remote party verified
the TB enclave, it can be sure that the hypervisor correctly
enforces the tweak for all debug enclaves in the system.

Sealing. Both, non-tweaked and tweaked debug enclaves
share the same sealing keys. This is no problem unless an
attacker manages to compromise the hypervisor and disables
the tweak. Although hypervisor attestation would fail in
that case, the attacker would be able to extract all sealing
keys by simply debugging all enclaves. To prevent this, one
can delegate sealing key derivation to the TB enclave. The
TB enclave, running in production mode, only derives actual
sealing keys if hypervisor attestation succeeds.

8. FURTHER CONSIDERATIONS
This section touches on advanced topics potential users of

SGXIO should be aware of, namely driver complexity and
side-channels.

Driver Complexity. Depending on the bus protocol,
driver design might be challenging. Especially multiplexed
buses, such as USB are non-trivial to deal with. One has to
identify proper policy rules which guarantee a trusted path.
Zhou et al. demonstrate how to establish a trusted path to
one specific USB device, while keeping other USB devices
accessible to the untrusted OS [64]. To deal with complexity
of the USB driver stack, they identified all security-relevant
parts and either moved them entirely into a trusted domain
or at least verified their results. All non-critical operations
are kept in the untrusted domain. This approach would in
principle also be supported by SGXIO with a cooperative
design of the OS and secure I/O drivers.

SGX Side-Channels. The threat models of SGX and
SGXIO do not consider side channels [24]. SGX is vulnerable
to a paging side channel, leaking address information on a
page granularity [59]. Likewise, SGX is most likely suscep-
tible to timing attacks on the cache or DRAM [12,45]. To
mitigate such side channels, enclave developers have to stick
to implementation-level approaches. This includes reduction
of sensitive data dependencies and hiding of memory access
patterns [2,40,59].

9. CONCLUSION
We present SGXIO, the first SGX-based architecture to

support generic trusted paths. Therefore, we augment SGX
with a small and trusted hypervisor for setting up a generic
trusted path, while SGX helps in protecting user apps from

an untrusted OS. We solve the challenge of combining the
security domains of SGX and the hypervisor. We do so by
attesting the hypervisor with assistance of a TPM towards
a special trusted boot enclave, which is bound to the local
computer. With SGXIO, both a remote party and a local
user can verify security of trusted paths.

SGXIO has an easy programming model, allowing applica-
tion developers to integrate sensitive code directly in existing,
untrusted code and open a trusted path by means of ordi-
nary, virtual device I/O. Furthermore, we show how SGXIO
can omit enclave licensing by making debug enclaves behave
like production enclaves. Therefore, the trusted hypervisor
disables SGX debugging instructions for the whole untrusted
VM.

SGXIO demonstrates that SGX is not limited to cloud com-
puting and DRM scenarios. SGXIO addresses user-centric
application security, making generic trusted paths available
to SGX enclaves. This can greatly improve application se-
curity, protecting against kernel-level keyloggers and screen-
loggers, for example. Moreover, SGXIO can help honest
web administrators to isolate sensitive web services within a
tweaked debug enclaves without the need for enclave licens-
ing. SGXIO is compatible to unmodified legacy OSes and
runs on off-the-shelf notebooks.

Acknowledgments
This work was partially supported by the TU Graz LEAD
project ”Dependable Internet of Things in Adverse Environ-
ments”.

10. REFERENCES
[1] I. Anati, S. Gueron, S. Johnson, and V. Scarlata.

Innovative technology for CPU based attestation and
sealing. In “HASP’13”, vol. 13 (Aug. 2013).

[2] I. Anati, F. McKeen, S. Gueron, H. Huang,
S. Johnson, R. Leslie-Hurd, H. Patil, C. V.
Rozas, and H. Shafi. Intel Software Guard
Extensions (Intel SGX) (2015). Tutorial Slides
presented at ICSA 2015.

[3] ARM. TrustZone. http://www.arm.com/products/
processors/technologies/trustzone/index.php. (accessed
2016-04-04).

[4] A. M. Azab, P. Ning, and X. Zhang. SICE: A
Hardware-level Strongly Isolated Computing
Environment for x86 Multi-core Platforms. In “CCS
’11”, pp. 375–388. ACM (2011).

[5] A. Baumann, M. Peinado, and G. Hunt. Shielding
Applications from an Untrusted Cloud with Haven. In
“OSDI’14”, pp. 267–283. USENIX Association (2014).

[6] J. Beekman. Intel has full control over SGX.
https://jbeekman.nl/blog/2015/10/intel-has-full-
control-over-sgx/ (Oct. 2015). (accessed 2016-03-03).

[7] R. Boivie and P. Williams. SecureBlue++: CPU
Support for Secure Executables. Research report, IBM
(Apr. 2013). Reference no. RC25369.

[8] D. Champagne and R. B. Lee. Scalable architectural
support for trusted software. In “HPCA’16”, pp. 1–12
(Jan. 2010).

[9] S. Checkoway and H. Shacham. Iago Attacks: Why
the System Call API is a Bad Untrusted RPC Interface.
In “ASPLOS ’13”, pp. 253–264. ACM (2013).

[10] X. Chen, T. Garfinkel, E. C. Lewis,
P. Subrahmanyam, C. A. Waldspurger, D. Boneh,
J. Dwoskin, and D. R. Ports. Overshadow: A
Virtualization-based Approach to Retrofitting
Protection in Commodity Operating Systems. In
“ASPLOS XIII”, pp. 2–13. ACM (2008).

[11] S. Chhabra, B. Rogers, Y. Solihin, and
M. Prvulovic. SecureME: A Hardware-software
Approach to Full System Security. In “ICS ’11”, pp.
108–119. ACM (2011).

[12] V. Costan and S. Devadas. Intel SGX Explained.
IACR ePrint 086, (Feb. 2016).

[13] V. Costan, I. A. Lebedev, and S. Devadas.
Sanctum: Minimal Hardware Extensions for Strong
Software Isolation. In “USENIX Security’16”, pp.
857–874 (Aug. 2016).

[14] J. Criswell, N. Dautenhahn, and V. Adve. Virtual
Ghost: Protecting Applications from Hostile Operating
Systems. In “ASPLOS ’14”, pp. 81–96. ACM (2014).

[15] D. Evtyushkin, J. Elwell, M. Ozsoy,
D. Ponomarev, N. A. Ghazaleh, and R. Riley.
Iso-X: A Flexible Architecture for Hardware-Managed
Isolated Execution. In “MICRO’14”, pp. 190–202 (Dec.
2014).

[16] E. Fernandes, Q. A. Chen, G. Essl, J. A.
Halderman, Z. M. Mao, and A. Prakash. TIVOs:
Trusted Visual I/O Paths for Android. University of
Michigan CSE Technical Report CSE-TR-586-14
(2014).

[17] A. Filyanov, J. M. McCune, A. R. Sadeghi, and
M. Winandy. Uni-directional trusted path:
Transaction confirmation on just one device. In
“DSN’11”, pp. 1–12 (June 2011).

[18] M. Hoekstra, R. Lal, P. Pappachan, V. Phegade,
and J. Del Cuvillo. Using Innovative Instructions to
Create Trustworthy Software Solutions. In “HASP ’13”.
ACM (2013).

[19] O. S. Hofmann, S. Kim, A. M. Dunn, M. Z. Lee,
and E. Witchel. InkTag: Secure Applications on an
Untrusted Operating System. In “ASPLOS ’13”, pp.
265–278. ACM (2013).

[20] Intel Trusted Execution Technology. White paper, Intel
Corporation (2012). Reference no. 323586-003US.

[21] Intel Software Guard Extensions Programming
Reference (Oct. 2014). Reference no. 329298-002US.

[22] Intel 64 and IA-32 Architectures Software Developer’s
Manual (Sept. 2015). Reference no. 325462-056US.

[23] Intel Trusted Execution Technology (Intel TXT),
Software Development Guide (July 2015). Reference no.
315168-012.

[24] Intel Software Guard Extensions Developer Guide
(2016).

[25] Intel Software Guard Extensions Evaluation SDK for
Windows OS. User’s Guide (Jan. 2016). Revision 1.1.1.

[26] C. Jacobsen, M. Khole, S. Spall, S. Bauer, and
A. Burtsev. Lightweight Capability Domains:
Towards Decomposing the Linux Kernel. SIGOPS Oper.
Syst. Rev. 49(2), 44–50 (Jan. 2016).

[27] S. Johnson, D. Zimmerman, and B. Derek. Intel
SGX: Debug, Production, Pre-release what’s the
difference? https:

//software.intel.com/en-us/blogs/2016/01/07/intel-
sgx-debug-production-prelease-whats-the-difference
(Jan. 2016). (accessed 2016-04-04).

[28] G. Klein, K. Elphinstone, G. Heiser,
J. Andronick, D. Cock, P. Derrin, D. Elkaduwe,
K. Engelhardt, R. Kolanski, M. Norrish,
T. Sewell, H. Tuch, and S. Winwood. seL4:
Formal Verification of an OS Kernel. In “SOSP ’09”, pp.
207–220. ACM (2009).

[29] S. Knight. Intel to enable SGX technology on future
Skylake CPUs. http://www.techspot.com/news/62324-
intel-enable-sgx-technology-future-skylake-cpus.html
(Oct. 2015). (accessed 2016-04-04).

[30] N. Knupffer. Intel Insider –What Is It? (Is it DRM?
And yes it delivers top quality movies to your PC).
https://blogs.intel.com/technology/2011/01/intel
insider - what is it no/ (Jan. 2011). (accessed
2016-04-04).

[31] M. Lange and S. Liebergeld. Crossover: Secure and
Usable User Interface for Mobile Devices with Multiple
Isolated OS Personalities. In “ACSAC ’13”, pp. 249–257.
ACM (2013).

[32] W. Li, M. Ma, J. Han, Y. Xia, B. Zang, C.-K.
Chu, and T. Li. Building Trusted Path on Untrusted
Device Drivers for Mobile Devices. In “APSys ’14”, pp.
8:1–8:7. ACM (2014).

[33] D. Liu, E. Cuervo, V. Pistol, R. Scudellari, and
L. P. Cox. ScreenPass: Secure Password Entry on
Touchscreen Devices. In “MobiSys ’13”, pp. 291–304.
ACM (2013).

[34] J. M. McCune, Y. Li, N. Qu, Z. Zhou, A. Datta,
V. Gligor, and A. Perrig. TrustVisor: Efficient
TCB Reduction and Attestation. In “SP ’10”, pp.
143–158. IEEE Computer Society (2010).

[35] J. M. McCune, B. J. Parno, A. Perrig, M. K.
Reiter, and H. Isozaki. Flicker: An Execution
Infrastructure for Tcb Minimization. In “Eurosys ’08”,
pp. 315–328. ACM (2008).

[36] F. McKeen, I. Alexandrovich, A. Berenzon, C. V.
Rozas, H. Shafi, V. Shanbhogue, and U. R.
Savagaonkar. Innovative instructions and software
model for isolated execution. In “HASP’13”, p. 10
(2013).

[37] T. Murray, D. Matichuk, M. Brassil, P. Gammie,
T. Bourke, S. Seefried, C. Lewis, X. Gao, and
G. Klein. seL4: From General Purpose to a Proof of
Information Flow Enforcement. In “SP’13”, pp. 415–429
(May 2013).

[38] National Vulnerability Database.
https://web.nvd.nist.gov/. (accessed 2016-08-17).

[39] “seL4 Reference Manual, Version 3.0.0”. NICTA (Mar.
2016). https://wiki.sel4.systems/Documentation
(2016/04/04).

[40] O. Ohrimenko, F. Schuster, C. Fournet,
A. Mehta, S. Nowozin, K. Vaswani, and M. Costa.
Oblivious Multi-Party Machine Learning on Trusted
Processors. In “USENIX Security’16”, pp. 619–636
(2016).

[41] E. Owusu, J. Guajardo, J. McCune, J. Newsome,
A. Perrig, and A. Vasudevan. OASIS: On Achieving
a Sanctuary for Integrity and Secrecy on Untrusted
Platforms. In “CCS ’13”, pp. 13–24. ACM (2013).

[42] B. Parno. Bootstrapping Trust in a ”Trusted”
Platform. In “HotSec’08” (2008).

[43] PCI Security Standards Council. Approved PIN
Transaction Security Devices.
https://www.pcisecuritystandards.org/assessors and
solutions/pin transaction devices. (accessed
2016-04-04).

[44] J. M. M. A. Perrig and M. K. Reiter. Safe Passage
for Passwords and Other Sensitive Data. In “NDSS’09”
(2009).

[45] P. Pessl, D. Gruss, C. Maurice, M. Schwarz, and
S. Mangard. DRAMA: Exploiting DRAM Addressing
for Cross-CPU Attacks. In “USENIX Security’16”, pp.
565–581. USENIX Association (Aug. 2016).

[46] D. R. K. Ports and T. Garfinkel. Towards
Application Security on Untrusted Operating Systems.
In “HOTSEC’08”, pp. 1:1–1:7. USENIX Association
(2008).

[47] X. Ruan. “Platform Embedded Security Technology
Revealed. Safeguarding the Future of Computing with
Intel Embedded Security and Management Engine”.
ApressOpen (2014).

[48] S. W. Smith and S. Weingart. Building a
high-performance, programmable secure coprocessor.
Computer Networks 31(8), 831–860 (Apr. 1999).

[49] J. Song, R. Poovendran, J. Lee, and T. Iwata.
The AES-CMAC Algorithm. RFC 4493, (June 2006).

[50] G. E. Suh, D. Clarke, B. Gassend, M. van Dijk,
and S. Devadas. AEGIS: Architecture for
Tamper-evident and Tamper-resistant Processing. In
“ICS ’03”, pp. 160–171. ACM (2003).

[51] H. Sun, K. Sun, Y. Wang, J. Jing, and H. Wang.
TrustICE: Hardware-Assisted Isolated Computing
Environments on Mobile Devices. In “DSN’15”, pp.
367–378 (June 2015).

[52] R. Ta-Min, L. Litty, and D. Lie. Splitting
Interfaces: Making Trust Between Applications and
Operating Systems Configurable. In “OSDI ’06”, pp.
279–292. USENIX Association (2006).

[53] TCG. “Trusted Platform Module Library. Part 1:
Architecture. Family 2.0”. (Oct. 2014). Revision 01.16.

[54] D. L. C. Thekkath, M. Mitchell, P. Lincoln,
D. Boneh, J. Mitchell, and M. Horowitz.
Architectural Support for Copy and Tamper Resistant
Software. In “ASPLOS IX”, pp. 168–177. ACM (2000).

[55] T. Tong and D. Evans. Guardroid: A trusted path
for password entry. Mobile Security Technologies
(2013).

[56] A. Vasudevan, S. Chaki, L. Jia, J. McCune,
J. Newsome, and A. Datta. Design, Implementation
and Verification of an eXtensible and Modular
Hypervisor Framework. In “SP’13”, pp. 430–444. IEEE
Computer Society (2013).

[57] A. Vasudevan, J. McCune, J. Newsome,
A. Perrig, and L. Van Doorn. CARMA: A
hardware tamper-resistant isolated execution
environment on commodity x86 platforms. In
“ASIACCS ’12”, pp. 48–49. ACM (2012).

[58] Verified by Visa. https://www.visaeurope.com/making-
payments/verified-by-visa/. (accessed 2016-08-10).

[59] Y. Xu, W. Cui, and M. Peinado. Controlled-Channel

Attacks: Deterministic Side Channels for Untrusted
Operating Systems. In “SP’15”. IEEE (May 2015).

[60] J. Yang and K. G. Shin. Using Hypervisor to Provide
Data Secrecy for User Applications on a Per-page Basis.
In “VEE ’08”, pp. 71–80. ACM (2008).

[61] M. Yu, V. D. Gligor, and Z. Zhou. Trusted Display
on Untrusted Commodity Platforms. In “CCS ’15”, pp.
989–1003. ACM (2015).

[62] Z. Zhou. “On-Demand Isolated I/O for
Security-Sensitive Applications on Commodity
Platforms”. PhD thesis, Carnegie Mellon University
(2014).

[63] Z. Zhou, V. D. Gligor, J. Newsome, and J. M.
McCune. Building Verifiable Trusted Path on
Commodity x86 Computers. In “SP’12”, pp. 616–630
(May 2012).

[64] Z. Zhou, M. Yu, and V. D. Gligor. Dancing with
Giants: Wimpy Kernels for On-Demand Isolated I/O.
In “SP’14”, pp. 308–323 (May 2014).

APPENDIX
We present a fast non-interactive key transport scheme for
local SGX enclaves based on local attestation. First, local
attestation is outlined. Second, our scheme is given in detail.

Local attestation uses the two instructions EREPORT and
EGETKEY to generate and verify an attestation report, respec-
tively. Both instructions are outlined in Algorithm 1 and 2.
To attest itself to a target enclave T, enclave E generates a
report using EREPORT. To verify the report, enclave T queries
the report key via EGETKEY and manually re-calculates the
report signature. The local attestation procedure is outlined
in Algorithm 3. For the sake of simplicity, we omit some
details in the algorithm descriptions. Furthermore, we de-
note MRENCLAVE of enclave X as XID, as it serves as enclave
identifier.

Algorithm 1 EREPORTEID (TID, data)

EREPORT generates a report of enclave E, targeted at en-
clave T , containing additional user data ∈ {0, 1}256.
rpkeyTID ← SHA256(TID)
mac← AESCMAC(rpkeyTID , EID||data)
return (EID||data||mac)

Algorithm 2 EGETKEYEID (key type)

EGETKEY returns the report key of enclave E.
if key type = REPORT KEY then

return SHA256(EID)

Algorithm 3 LocalAttestationEID (TID, data)

Enclave E attests itself to target enclave T , providing
additional data to be authenticated.
E → T : rp← EREPORTEID (TID, data)
T : rpkeyTID ← EGETKEYTID (REPORT KEY)
T : mac← AESCMAC(rpkeyTID , rp.EID||rp.data)
if mac = rp.mac then

T : accept rp
else

T : reject rp

Non-Interactive Key Transport Scheme. SGX uses
an AES-based CMAC [49]. This is a symmetric signature
scheme using the same key for signature creation and veri-
fication. Hence, local attestation already provides a shared
symmetric secret between enclaves, namely the report key.
Any enclave can sign reports for a target by issuing EREPORT.
Although it has no direct access to the target enclave’s report
key, it can indirectly use it via the EREPORT instruction. In
turn, the target enclave is able to access its own report key
via EGETKEY. We use this symmetry of report keys to derive
fresh encryption keys.

To establish a new key between enclave A and B, A chooses
a random nonce and generates an attestation report over
this nonce, targeted at B. However, A never transmits this
report to B but uses the report’s MAC as an 128-bit shared,
symmetric encryption key. Instead, enclave A sends its
identity as well as the nonce to B, which can query its report
key and re-calculate the MAC to obtain the shared key. The
scheme is outlined in Algorithm 4.

Algorithm 4 Non-interactive, symmetric key exchange

Enclave A sends a fresh symmetric key to enclave B.

A : nonce
R← {0, 1}256 chosen uniformly at random

A : rp← EREPORTAID (BID, nonce)
A : keyAB ← rp.mac
A→ B : (AID, nonce)
B : rpkeyBID ← EGETKEYBID (REPORT KEY)
B : keyAB ← AESCMAC(rpkeyBID , AID||nonce)

Our scheme is non-interactive since it only involves a single
uni-directional transmission of the nonce. It has zero over-
head since local attestation is supported by SGX hardware.
The only noteworthy enclave code, namely the AES-CMAC
implementation, is typically already part of an enclave code-
base for doing local attestation. Moreover, the scheme sup-
ports authentication. On the one hand, enclave A binds
the key to enclave B by means of local attestation. On the
other hand, enclave B knows the identity of the enclave it is
deriving a shared key for. To also achieve liveness, enclave
B could send the encrypted nonce back to A.

