

Securing Memory Encryption and Authentication Against Side-Channel Attacks Using Unprotected Primitives

Thomas Unterluggauer, Mario Werner, and Stefan Mangard, IAIK, Graz University of Technology

6. April 2017

- Memory encryption to protect from physical access
- Differential power analysis (DPA) practically feasible

- Memory encryption to protect from physical access
- Differential power analysis (DPA) practically feasible
- MEAS: Memory Encryption and Authentication secure against DPA
 - Combines re-keying and authentication trees
 - Limit inputs processed under one key by two

- Memory encryption to protect from physical access
- Differential power analysis (DPA) practically feasible
- MEAS: Memory Encryption and Authentication secure against DPA
 - Combines re-keying and authentication trees
 - Limit inputs processed under one key by two
 - Higher-order protection: masking of plaintexts
 - No need for DPA-protected implementations

- Memory encryption to protect from physical access
- Differential power analysis (DPA) practically feasible
- MEAS: Memory Encryption and Authentication secure against DPA
 - Combines re-keying and authentication trees
 - Limit inputs processed under one key by two
 - Higher-order protection: masking of plaintexts
 - No need for DPA-protected implementations
 - Suitable for both RAM and NVM
 - Memory overhead: 7.3% for 512-byte disk sectors

www.iaik.tugraz.at

Motivation Machine Customer Factory Company manufactures Machine Machine Controller HDD RAM SD-Card

- Memory contains high-value assets
- Customer interested in:
 - Intellectual property
 - Source code
 - Control parameters
 - Billing data
 - Pay per use

- Countermeasure:
 - Encrypt memory
 - Store key securely

- Countermeasure:
 - Encrypt memory
 - Store key securely
- Side-channel leakage:
 - Running device emits information on processed data
 - Power, EM, timing,...

- Countermeasure:
 - Encrypt memory
 - Store key securely
- Side-channel leakage:
 - Running device emits information on processed data
 - Power, EM, timing,...

 \Rightarrow Side-channel attacks possible

Attack Setting

- Computing device running in hostile environment
- Memory contains sensitive information

Attack Setting

- Computing device running in hostile environment
- Memory contains sensitive information
- Attacker can access device and (encrypted) memory
- Side-channel information available to the attacker

Attack Setting

- Computing device running in hostile environment
- Memory contains sensitive information
- Attacker can access device and (encrypted) memory
- Side-channel information available to the attacker

 \Rightarrow Simple memory encryption is insufficient

Differential Power Analysis

Key K used for multiple p_i, c_i

• *n* encryptions: $E_K(p_i)$

Differential Power Analysis

Key K used for multiple p_i, c_i

• *n* encryptions: $E_{\kappa}(p_i)$

Observe power consumption

Differential Power Analysis

- Key *K* used for multiple *p*_{*i*}, *c*_{*i*}
 - *n* encryptions: $E_K(p_i)$
- Observe power consumption
- Power model for $E_{\mathcal{K}}(p_i) \forall \mathcal{K}$
 - Divide-and-conquer approach
- Statistical analysis reveals K
 - E.g. correlation

DPA Countermeasures

Protect implementation (masking)

DPA Countermeasures

- Protect implementation (masking)
- Change key frequently (re-keying)
 - Reduce input data complexity
 - Protects the key and thus plaintext

DPA Countermeasures

- Protect implementation (masking)
- Change key frequently (re-keying)
 - Reduce input data complexity
 - Protects the key and thus plaintext
 - Leakage-resilient encryption
 - Application to memory encryption?

Leakage-resilient schemes for arbitrary length

- Leakage-resilient schemes for arbitrary length
- Memory: read-modify-write operation

- Leakage-resilient schemes for arbitrary length
- Memory: read-modify-write operation

- Leakage-resilient schemes for arbitrary length
- Memory: read-modify-write operation
- 2nd-order DPA to learn constant plaintexts

• Encryption of constant p_0 with different keys k_0, k'_0, k''_0

• Encryption of constant p_0 with different keys k_0, k'_0, k''_0

• Encryption of constant p_0 with different keys k_0, k'_0, k''_0

- Encryption of constant p_0 with different keys k_0, k'_0, k''_0
- Profiling phase: templates for k_{0,0} and v₀

- Encryption of constant p_0 with different keys k_0, k'_0, k''_0
- Profiling phase: templates for $k_{0,0}$ and v_0
- Attack phase:
 - Probabilities for $k_{0,0}$ and v_0

- Encryption of constant p_0 with different keys k_0, k'_0, k''_0
- Profiling phase: templates for $k_{0,0}$ and v_0
- Attack phase:
 - Probabilities for $k_{0,0}$ and v_0
 - Joint probability of $k_{0,0}$ and $v_0 \rightarrow p_{0,0}$

- Encryption of constant p_0 with different keys k_0, k'_0, k''_0
- Profiling phase: templates for $k_{0,0}$ and v_0
- Attack phase:
 - Probabilities for $k_{0,0}$ and v_0
 - Joint probability of $k_{0,0}$ and $v_0 \rightarrow p_{0,0}$
 - Many different keys to get unique p_{0,0}

- 2nd-order template attack
 - Very powerful attack
 - Hard to perform in practice

- 2nd-order template attack
 - Very powerful attack
 - Hard to perform in practice
- DPA cannot be prevented completely
 - 1st-order DPA security

- 2nd-order template attack
 - Very powerful attack
 - Hard to perform in practice
- DPA cannot be prevented completely
 - 1st-order DPA security
- Streaming mode vs. random access
 - Split memory in blocks with different keys
 - Secure key storage on trusted chip
 - Minimal storage: tree approach
 - C.f., Merkle tree

Memory split into *m* blocks *p*₀,*p*₁,...,*p*_{*m*-1}

- Memory split into *m* blocks *p*₀,*p*₁,...,*p*_{*m*-1}
- Apply AE scheme: $(c_i, t_i) = AE(dek_i; p_i)$

- Memory split into *m* blocks *p*₀,*p*₁,...,*p*_{*m*-1}
- Apply AE scheme: $(c_i, t_i) = AE(dek_i; p_i)$
- Recursive key encryption using ENC

Re-keying: choose fresh, random keys on write

- Re-keying: choose fresh, random keys on write
- Authenticity failure: reset or re-keying

- Re-keying: choose fresh, random keys on write
- Authenticity failure: reset or re-keying
- Data complexity for DPA limited to 2

- Tree-based scheme: 1st-order DPA security
 - Constant data encrypted with different keys

- Tree-based scheme: 1st-order DPA security
 - Constant data encrypted with different keys
- Randomization of plaintext to increase attack order

- Tree-based scheme: 1st-order DPA security
 - Constant data encrypted with different keys
- Randomization of plaintext to increase attack order
- Masking with *d*th-order security:
 - Tree node with *b* blocks $p_0, ..., p_{b-1}$

Tree-based scheme: 1st-order DPA security

- Constant data encrypted with different keys
- Randomization of plaintext to increase attack order
- Masking with dth-order security:
 - Tree node with *b* blocks $p_0, ..., p_{b-1}$
 - Generate d 1 random masks $m_0, ..., m_{d-2}$
 - $r_i = p_i \oplus m_0 \oplus ... \oplus m_{d-2}$

Tree-based scheme: 1st-order DPA security

- Constant data encrypted with different keys
- Randomization of plaintext to increase attack order
- Masking with dth-order security:
 - Tree node with *b* blocks $p_0, ..., p_{b-1}$
 - Generate d 1 random masks $m_0, ..., m_{d-2}$
 - $r_i = p_i \oplus m_0 \oplus ... \oplus m_{d-2}$
 - $c = ENC(dek; m_0||...||m_{d-2}||r_0||...||r_b)$
 - Masks updated when key changes

Tree-based scheme: 1st-order DPA security

- Constant data encrypted with different keys
- Randomization of plaintext to increase attack order
- Masking with dth-order security:
 - Tree node with *b* blocks $p_0, ..., p_{b-1}$
 - Generate d 1 random masks $m_0, ..., m_{d-2}$
 - $r_i = p_i \oplus m_0 \oplus ... \oplus m_{d-2}$
 - $c = ENC(dek; m_0||...||m_{d-2}||r_0||...||r_b)$
 - Masks updated when key changes
- Various trade-offs possible

Comparison

	Auth.	Conf.	DPA Security	
Meas	\checkmark	\checkmark	\checkmark	
PAT	\checkmark			
TEC Tree	\checkmark	\checkmark		
Merkle Tree	\checkmark		\checkmark	
XTS / XEX		\checkmark		

Comparison

	Auth.	Conf.	DPA Security	Paralle Read	lizable Write
Meas	\checkmark	\checkmark	\checkmark		
PAT	\checkmark			\checkmark	\checkmark
TEC Tree	\checkmark	\checkmark		\checkmark	\checkmark
Merkle Tree	\checkmark		\checkmark	\checkmark	
XTS / XEX		\checkmark		\checkmark	\checkmark

Memory Overhead

Memory Overhead

- Memory requires protection from physical access
- Power analysis feasible for most physical attackers
- Frequent re-keying as one DPA countermeasure

- Memory requires protection from physical access
- Power analysis feasible for most physical attackers
- Frequent re-keying as one DPA countermeasure
- MEAS: memory encryption and authentication with DPA protection
 - No DPA-protected implementation required

- Memory requires protection from physical access
- Power analysis feasible for most physical attackers
- Frequent re-keying as one DPA countermeasure
- MEAS: memory encryption and authentication with DPA protection
 - No DPA-protected implementation required
 - Combines re-keying and authentication trees
 - Masking of plaintexts for higher-order protection

- Memory requires protection from physical access
- Power analysis feasible for most physical attackers
- Frequent re-keying as one DPA countermeasure
- MEAS: memory encryption and authentication with DPA protection
 - No DPA-protected implementation required
 - Combines re-keying and authentication trees
 - Masking of plaintexts for higher-order protection
 - Memory overhead as existing authentication trees

Securing Memory Encryption and Authentication Against Side-Channel Attacks Using Unprotected Primitives

Thomas Unterluggauer, Mario Werner, and Stefan Mangard, IAIK, Graz University of Technology

6. April 2017