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Content

= Memory encryption to protect from physical access
= Differential power analysis (DPA) practically feasible

= MEAS: Memory Encryption and Authentication
secure against DPA

= Combines re-keying and authentication trees

= Limit inputs processed under one key by two

Higher-order protection: masking of plaintexts

No need for DPA-protected implementations
Suitable for both RAM and NVM

Memory overhead: 7.3% for 512-byte disk sectors
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Motivation

= Memory contains
high-value assets Customer Factory
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= Customer interested in:
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Motivation

= Countermeasure:

u EnCI’ypt memory Customer Factory
= Store key securely
4
= Side-channel leakage:

= Running device emits

information on (&)
processed data HDD
= Power, EM, timing,...

= Side-channel attacks possible
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Attack Setting

= Computing device running
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= Memory contains sensitive
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Attack Setting

= Computing device running
in hostile environment Customer Factory

= Memory contains sensitive
information

= Attacker can access device

and (encrypted) memory )
= Side-channel information -
available to the attacker SD.Carda MM

= Simple memory encryption is insufficient
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Differential Power Analysis
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Differential Power Analysis

= Key K used for multiple p;, ¢;

= n encryptions: Ex(p;)

K
= Observe power consumption D > E Ly C,

= Power model for Ex(pi) V K
= Divide-and-conquer approach %)%Li
= Statistical analysis reveals K .

= E.g. correlation
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DPA Countermeasures

= Protect implementation (masking)
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DPA Countermeasures

= Protect implementation (masking)
= Change key frequently (re-keying)

kl
= Reduce input data compIeX|ty. D, E
= Protects the key and thus plaintext
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DPA Countermeasures

= Protect implementation (masking) "

1

= Change key frequently (re-keying) +

Reduce input data complexity
Protects the key and thus plaintext

- C;
Leakage-resilient encryption
Application to memory encryption? t
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Re-Keying for Memory Encryption

= Leakage-resilient schemes for arbitrary length
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= Memory: read-modify-write operation
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Re-Keying for Memory Encryption

= Leakage-resilient schemes for arbitrary length
= Memory: read-modify-write operation

c, c,

+ k' + k!
bE [“pbE [ -
A ¥y
DB DB
Vel Ve

Thomas Unterluggauer, Mario Werner, and Stefan Mangard, Graz University of Technology
6. April 2017

\




www.iaik.tugraz.at m

Re-Keying for Memory Encryption

= Leakage-resilient schemes for arbitrary length
= Memory: read-modify-write operation
= 2nd-order DPA to learn constant plaintexts
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Re-Keying for Memory Encryption (2)

= Encryption of constant p, with different keys ko, kj, k{
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Re-Keying for Memory Encryption (2)

= Encryption of constant p, with different keys ko, kj, k{
= Profiling phase: templates for k; o and vy
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Re-Keying for Memory Encryption (2)

= Encryption of constant p, with different keys ko, kj, k{
= Profiling phase: templates for k; o and vy
= Attack phase:

= Probabilities for ky o and vy
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Re-Keying for Memory Encryption (2)

= Encryption of constant p, with different keys ko, kj, k{
= Profiling phase: templates for k; o and vy
= Attack phase:

= Probabilities for ky o and vy
= Joint probability of koo and vo — poo
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Re-Keying for Memory Encryption (2)

= Encryption of constant p, with different keys ko, kj, k{
= Profiling phase: templates for k; o and vy
= Attack phase:

= Probabilities for ky o and vy
= Joint probability of koo and vo — poo
= Many different keys to get unique po o
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= 2nd-order template attack

= Very powerful attack
» Hard to perform in practice
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Re-Keying for Memory Encryption (3)

= 2nd-order template attack

= Very powerful attack
» Hard to perform in practice

= DPA cannot be prevented completely
= 1st-order DPA security
= Streaming mode vs. random access

= Split memory in blocks with different keys

= Secure key storage on trusted chip
= Minimal storage: tree approach

= C.f., Merkle tree
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MEAS

= Memory split into m blocks po,p1,---,Pm—1
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MEAS

= Memory split into m blocks po,p1,---,Pm—1
= Apply AE scheme: (c;, ;) = AE(dek;; pi)
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MEAS

= Memory split into m blocks po,p1,---,Pm—1
= Apply AE scheme: (c;, ;) = AE(dek;; pi)
= Recursive key encryption using ENC

Cio
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MEAS

= Re-keying: choose fresh, random keys on write
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MEAS

= Re-keying: choose fresh, random keys on write
= Authenticity failure: reset or re-keying
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MEAS

= Re-keying: choose fresh, random keys on write
= Authenticity failure: reset or re-keying
= Data complexity for DPA limited to 2
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Higher-order DPA Security

= Tree-based scheme: 1st-order DPA security

= Constant data encrypted with different keys
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Higher-order DPA Security

= Tree-based scheme: 1st-order DPA security
= Constant data encrypted with different keys

= Randomization of plaintext to increase attack order
= Masking with dth-order security:

= Tree node with b blocks pq, ..., pp_1
Generate d — 1 random masks my, ..., My_»
li=piSMmMy®d... 0 My_2

¢ = ENC(dek; mo||...||mg—2]||rol|.--||rb)
Masks updated when key changes

= Various trade-offs possible
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Comparison
Auth. | Conf. | DPA Security
MEAS v v v
PAT v
TEC Tree v v
Merkle Tree v v
XTS / XEX v
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Comparison
. Parallelizable

Auth. | Conf. | DPA Security Read | Write
MEAS v v v
PAT v v v
TEC Tree v v v v
Merkle Tree v v v
XTS / XEX v v v
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Memory Overhead

140 —e— MEAS (1st-order DPA security)
-#- Merkle Tree / PAT / TEC Tree
120 |+, --#-- MEAS (2nd-order DPA security)
\\ - %- MEAS (3rd-order DPA security)
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Memory Overhead

140 | | —e— binary MEAS
--m-- 4-ary MEAS
120| |- @- 8-ary MEAS
--%.-16-ary MEAS

100

Overhead [%]
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Protection Order
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Conclusion

= Memory requires protection from physical access
= Power analysis feasible for most physical attackers
= Frequent re-keying as one DPA countermeasure
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Conclusion

Memory requires protection from physical access

Power analysis feasible for most physical attackers

Frequent re-keying as one DPA countermeasure

MEAS: memory encryption and authentication with
DPA protection

= No DPA-protected implementation required

= Combines re-keying and authentication trees

= Masking of plaintexts for higher-order protection

= Memory overhead as existing authentication trees
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