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Content

Memory encryption to protect from physical access

Differential power analysis (DPA) practically feasible

MEAS: Memory Encryption and Authentication
secure against DPA

Combines re-keying and authentication trees
Limit inputs processed under one key by two

Higher-order protection: masking of plaintexts
No need for DPA-protected implementations
Suitable for both RAM and NVM
Memory overhead: 7.3% for 512-byte disk sectors
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Memory contains
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Motivation

Countermeasure:

Encrypt memory
Store key securely

Side-channel leakage:

Running device emits
information on
processed data
Power, EM, timing,...
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Attack Setting

Computing device running
in hostile environment

Memory contains sensitive
information

Attacker can access device
and (encrypted) memory

Side-channel information
available to the attacker
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Attack Setting

Computing device running
in hostile environment

Memory contains sensitive
information

Attacker can access device
and (encrypted) memory

Side-channel information
available to the attacker

Customer Factory

Machineℓ

RAMHDD
SD-Card

Controller

⇒ Simple memory encryption is insufficient
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Differential Power Analysis

Key K used for multiple pi , ci

n encryptions: EK (pi)

Observe power consumption

Power model for EK (pi) ∀ K

Divide-and-conquer approach

Statistical analysis reveals K

E.g. correlation

K

Epi ci
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DPA Countermeasures

Protect implementation (masking)

Change key frequently (re-keying)

Reduce input data complexity
Protects the key and thus plaintext
Leakage-resilient encryption
Application to memory encryption?

K

 E   pi ci
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Re-Keying for Memory Encryption

Leakage-resilient schemes for arbitrary length

Memory: read-modify-write operation

2nd-order DPA to learn constant plaintexts
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Re-Keying for Memory Encryption (2)
Encryption of constant p0 with different keys k0, k ′0, k

′′
0

Profiling phase: templates for k0,0 and v0

Attack phase:

Probabilities for k0,0 and v0

Joint probability of k0,0 and v0 → p0,0

Many different keys to get unique p0,0

c0

E
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k0 p0,0

k0,0

S …
v0
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Re-Keying for Memory Encryption (3)

2nd-order template attack

Very powerful attack
Hard to perform in practice

DPA cannot be prevented completely

1st-order DPA security

Streaming mode vs. random access

Split memory in blocks with different keys
Secure key storage on trusted chip
Minimal storage: tree approach

C.f., Merkle tree
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MEAS

Memory split into m blocks p0,p1,...,pm−1

Apply AE scheme: (ci , ti) = AE(deki ;pi)

Recursive key encryption using ENC
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MEAS

Re-keying: choose fresh, random keys on write

Authenticity failure: reset or re-keying

Data complexity for DPA limited to 2
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Higher-order DPA Security

Tree-based scheme: 1st-order DPA security

Constant data encrypted with different keys

Randomization of plaintext to increase attack order
Masking with d th-order security:

Tree node with b blocks p0, ...,pb−1

Generate d − 1 random masks m0, ...,md−2

ri = pi ⊕m0 ⊕ ...⊕md−2

c = ENC(dek ;m0||...||md−2||r0||...||rb)
Masks updated when key changes

Various trade-offs possible
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Comparison

Auth. Conf. DPA Security

MEAS X X X
PAT X
TEC Tree X X
Merkle Tree X X
XTS / XEX X
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Comparison

Auth. Conf. DPA Security Parallelizable
Read Write

MEAS X X X
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Memory Overhead
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Memory Overhead
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Conclusion

Memory requires protection from physical access

Power analysis feasible for most physical attackers

Frequent re-keying as one DPA countermeasure

MEAS: memory encryption and authentication with
DPA protection

No DPA-protected implementation required
Combines re-keying and authentication trees
Masking of plaintexts for higher-order protection
Memory overhead as existing authentication trees
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