
Protecting the Control Flow of Embedded
Processors against Fault Attacks

Mario Werner1, Erich Wenger2,?, and Stefan Mangard1

1 Graz University of Technology, Austria
{mario.werner, stefan.mangard}@iaik.tugraz.at

2 Infineon Technologies AG, Munich, Germany
erich.wenger@infineon.com

Abstract. During the last two decades, most of the research on fault
attacks focused on attacking and securing intermediate values that occur
during the computation of cryptographic primitives. However, also fault
attacks on the control flow of software can compromise the security of
a system completely. Fault attacks on the control flow can for example
make a system branch to an administrative function directly or make it
bypass comparisons of redundant computations. Security checks based
on comparing redundant computations are for example commonly used
to secure PIN checks and implementations of block ciphers against fault
attacks.
Although control-flow integrity is of crucial importance to secure a sys-
tem against fault attacks, so far there exist only very few proposals for
countermeasures. This article addresses this gap and presents an effi-
cient hardware-supported technique that allows to maintain control-flow
integrity in the setting of fault attacks. The technique is based on so-
called generalized path signatures, which have initially been introduced
in the context of soft errors. We present a prototype implementation for
a Cortex-M3 microprocessor and corresponding compiler extensions in
LLVM. Our implementation, which increases the processor size by merely
6.4 %, detects every fault on the instruction-stream with 99.9 % probabil-
ity within 3 cycles. The runtime overhead of the protected applications
ranges from 2 % to 71 %.
Keywords: control-flow integrity, fault attacks, countermeasures.

1 Introduction

Fault attacks are a very active field of research since the seminal publication of
the so-called Bellcore attack [3] in 1997. Today, there exist published fault attacks
on almost all commonly used cryptographic primitives. Unless countermeasures
are implemented, these attacks allow to reveal the secret key by observing only
few outputs of faulted executions of the cryptographic primitive. A comprehen-
sive overview of fault attacks and countermeasures for cryptographic primitives
can be found in [5].

? This research has been conducted while Erich Wenger was employed at Graz Uni-
versity of Technology.

However, while most of the research on fault attacks focuses on attacking
and securing cryptographic primitives, it is important to point out that securing
a cryptographic primitive is not sufficient to secure a system. For example, the
Xbox 360 has not been hacked because of a fault attack on a cryptographic
primitive. It has been attacked successfully because it was possible to use a glitch
on the reset line to make the system bypass the signature check of the loaded
software [4]. In case of such attacks on the control flow of the executed software,
often a single successful fault induction is sufficient to compromise the security
of a system completely (e.g. by branching to an administrative function, by
obtaining root privileges, or by skipping all kinds of security checks). Attacks on
the control flow also allow to bypass certain countermeasures for cryptographic
computations. In [12] for example, techniques for multiple fault inductions are
discussed to first induce a fault in a cryptographic computation and then to
bypass the comparison with a redundant computation.

So far, there exist only very few publications that address the challenge of
securing the control flow of software against fault attacks. Examples of hardware-
supported approaches are [2], [8] and [9]. However, these works focus on securing
basic blocks and lead to a significant overhead in terms of code size when pro-
tecting the entire control-flow graph. In [6], a software approach for securing the
control flow is presented. Yet, this approach only allows to detect integrity vio-
lations at a coarse level of granularity. It does not allow detecting all modified,
missing, or repeated instructions with certainty.

The present article addresses the current lack of efficient countermeasures to
secure the control flow against fault attacks. We present an efficient hardware-
supported technique to provide strong security for the integrity of the control
flow. Our technique builds upon generalized path signature analysis that has
been introduced in the context of soft errors by Wilken and Shen [10,11].

In this article, we define the requirements for fault detection in the setting
of fault attacks and adapt the scheme of Wilken and Shen accordingly. Fur-
thermore, we present an implementation of the resulting countermeasure using
state-of-the-art hardware (ARM Cortex-M3) and software (LLVM compiler in-
frastructure). To the best of our knowledge, this work is the first to actually
implement a control-flow integrity scheme based on general path signature anal-
ysis. Our prototype implementation, which increases the processor size by 6.4 %,
detects every fault on the instruction-stream with 99.9 % probability within three
cycles. The runtime overhead of the protected applications ranges from 2 % to
71 %. The overhead for implementations of cryptographic primitives is very low
because such software typically has a low number of conditional branches. The
handling of conditional branches causes the main part of the overhead.

The remainder of this article is organized as follows. Section 2 gives an intro-
duction on control-flow integrity and the existing work of Wilken and Shen. We
adapt the scheme to the setting of fault attacks in Section 3. Section 4 presents
our prototype implementation and Section 5 the evaluation results. Finally, the
work concludes in Section 6.

2 Control-Flow Integrity in Fault-Tolerant Computing

The detection of faults in the control flow of a program requires to include
redundant information about the control flow into the program. The concept
of generalized path signature analysis (GPSA) by Wilken and Shen [10,11] is a
very efficient technique to add this redundancy. In the following subsections, we
first define the problem of control-flow integrity and then discuss the concept of
GPSA.

2.1 Control-Flow Integrity

The control flow of a program refers to the order in which its instructions,
branches, loops, and function calls have to be executed. Two types of instructions
can be distinguished in this context. First, there are sequential instructions, like
arithmetic and memory operations, which only have indirect influence on the
execution sequence. They are executed in strictly sequential order and have
exactly one subsequent instruction. Second, there are control-flow instructions,
like branch and call, which alter the execution sequence directly. Control-flow
instructions have one or more subsequent instructions and can select which one
is executed next.

A program is typically structured into code fragments which consist out of
an arbitrary number of sequential instructions (zero or more) followed by up
to one control-flow instruction. Such fragments are denoted as basic blocks. A
basic block is a strictly sequential piece of code which can only be entered at
the first and exited after the last instruction. All basic blocks of a program form
the so-called control-flow graph (CFG). The edges in a CFG are always directed
and visualize in which way the control flow can be transferred from one basic
block to another. Ensuring control-flow integrity (CFI) during the execution
of a program means that all instructions in a basic block are executed by the
processor as defined in the original program (i.e. no instructions are skipped or
altered) and that no new connections are added to the control-flow graph (i.e.
no other branches are done than those defined at compilation time).

Control-flow integrity does not include the protection of the decision which
path is taken in a CFG. This requires protecting the integrity of the data that
is used for the decision. However, it is important to note that data integrity
cannot be achieved without control-flow integrity. CFI is the basis for further
countermeasures, like data integrity. For example multiple computations and
comparisons can be done to ensure data integrity and the techniques for CFI
make sure that all these operations are indeed executed by the processor.

2.2 Derived Signatures

Derived signatures are a common technique in fault-tolerant computing to detect
violations of the integrity of the control flow. The basic idea of a derived signa-
ture is to add a small piece of hardware to the processor executing the software
that should be protected. Upon the execution of each instruction, the hardware

updates a checksum based on the executed instruction and the corresponding
control signals of the decoder. In the literature on CFI in fault-tolerant comput-
ing, such a checksum is called “ derived signature”. It is important to note that it
is not a cryptographic signature. Nevertheless, in order to be consistent with the
existing literature, we also use the term derived signature to denote a checksum
that is calculated in hardware based on a sequence of executed instructions.

In order to check such a derived signature when a program is executed, it
is necessary to have corresponding reference values. Derived signatures depend
on the executed instructions and the initial value of the signature. As both are
known at compilation time, reference values can be calculated when a program
is created. Typically, the reference values are embedded into the program by
instrumenting the binary, either during compilation or in a post-processing step.

Derived signatures can for example be checked at the end of every basic
block. This is shown in Figure 1a. The figure shows a control-flow graph with
six basic blocks, labelled %1 to %6 that include a while loop. At the end of each
basic block a signature check is done and therefore a reference value for each
basic block has to be added to the program. This is for example done in [2], [8]
and [9]. However, this leads to a significant overhead, which can be avoided
when using generalized path signatures. Furthermore, there is no protection for
the connections of the basic blocks.

2.3 Generalized Path Signature Analysis

In [7], the so-called path signature analysis (PSA) has been introduced. PSA
checks the integrity not only for a basic block, but along paths through a control-
flow graph. This significantly reduces the overhead. Wilken and Shen in [10,11]
extended PSA into generalized path signature analysis (GPSA) in order to op-
timize the overhead.

The basic idea of GPSA is to insert signature updates into the program code
in such a way that independent of the used paths in a CFG, the signature value
at a given instruction is always the same. This idea is illustrated in Figure 1b.
At the end of basic block %4, there is an update that makes sure that the
signature at the beginning of %5 is the same independent of the fact whether
it is reached via %3 or %4. The update at the end of %5 ensures that the
signature at the beginning of the while loop is independent of the fact whether
it is reached via %1 or %5. The values that need to be stored in the program code
to do the updates are called justifying signatures [10] and they are calculated at
compilation time—just like the reference values for the checks.

The concept of GPSA optimizes the number of total justifying signatures in
a CFG and can also be extended to protect function calls. In case of function
calls, there is an additional justifying signature necessary for each function call.
For details, please refer to [10].

GPSA does not require to have a check in every basic block and allows to
place signature checks at arbitrary positions in the program. These checks are
denoted as vertical signature checks. At minimum, it is necessary to insert one
signature check at the end of the program as it is done in Figure 1b. Depending

%1
check()

while
check()

%2
check()

%4
check()

%3
check()

%5
check()

%6
check()

(a) Basic block checking

%1

while

%2

%4
update()%3

%5
update()

%6
check()

(b) GPSA updates + checking

Fig. 1: Signature based checking methodologies.

on the application, a trade-off has to be made between between runtime and
memory overhead on the one hand and the detection latency on the other hand.

2.4 Continuous-Signature Monitoring

Wilken and Shen proposed continuous-signature monitoring (CSM) as an alter-
native concept to the manual placement of signature checks and to solve the
latency problem of vertical signature checks. The idea of CSM is to check the
signature, or at least parts of it, on every executed instruction. Implementing
CSM on top of GPSA is therefore as simple as checking h bits of the |S| bit
runtime signature on every executed instruction.

It has been proposed to use spare bits in the instruction encodings or to em-
bed reference information into the error-correction/detection bits of the memory
system. However, these approaches are not applicable to most modern proces-
sor architectures given their dense instruction encodings and the lack of error
detecting memory.

3 Control-Flow Integrity in the Setting of Fault Attacks

Fault attack detection is per se very similar to the detection of soft errors. The
main difference between the two is the fault model. Soft errors occur randomly
at a low frequency. Fault attacks on the other hand can be very controlled. When
comparing different checksums for derived signatures, it is therefore important
to not only look at average detection probabilities but to also keep the worst
case scenario in mind.

This section elaborates on the required properties that are needed in order
to make the schemes of Wilken and Shen ready for fault attacks. We define func-
tional requirements for both, the signature and the update function, which make
single faulty instructions detectable with certainty. We further show that the ac-
tual function selection has an huge impact on the detection capabilities. The
best of the evaluated functions can detect up to 7 faulty bits in the instruction
stream across two cycles with certainty.

3.1 Signature Function Selection

The calculation of derived signatures can be modeled using a compression func-
tion f which is used in a Merkle-Damg̊ard-like mode of operation. The next
signature Sj+1 = f(Sj , Ij) is calculated based on the preceding signature Sj and
the current instruction Ij . Collisions across multiple iterations of the signature
function are unavoidable given that the signature value S has fixed size. How-
ever, choosing a signature function with specific properties can at least provide
certain worst-case guarantees.

Functional Requirements. The signature function f needs the following prop-
erties in order to make a single faulty instruction Ij ⊕ ∆Ij detectable with
certainty, independent of the actual error ∆Ij and the number of faulty bits
HW (∆Ij).

– Reliability : Every error in the instruction stream (∆Ij 6= 0) has to result in
a signature error (∆Sj+1 6= 0) given that the original signature was correct
(∆Sj

= 0). Note that this requirement can only be fulfilled if |S| ≥ |I|.

Sj+1 ⊕∆Sj+1
= f(Sj , Ij ⊕∆Ij), ∀∆Ij 6= 0→ ∆Sj+1

6= 0 (1)

– Error preservation: An error, absorbed into the signature Sj⊕∆Sj
, must not

be eliminated by an error-free sequence of inputs (∆Ij = 0). This requirement
allows to arbitrarily delay the checking of a signature. Consequently, the
number of necessary signature checks can be reduced.

Sj+1 ⊕∆Sj+1
= f(Sj ⊕∆Sj

, Ij), ∀∆Sj
6= 0→ ∆Sj+1

6= 0 (2)

– Non associativity : The order in which instructions Ij , Ik are absorbed by f
must have an influence on the resulting signature value.

∀Ij 6= Ik → f(f(Sj , Ij), Ik) 6= f(f(Sj , Ik), Ij) (3)

– Invertibility : Depending on the concrete implementation of the scheme, in-
vertibility may also be a requirement. The signature function should there-
fore be invertible in S given Sj+1 and Ij . Our implementation for example
uses this property to be able to place signature updates at arbitrary places
along a path through the CFG. A different implementation, which enforces
that signature updates are only performed at merging points in the CFG,
would be able to cope without this property.

Sj = f−1(Sj+1, Ij), ∀Sj+1,∀Ij (4)

0 10 20 30 40 50 60

10−8

10−6

10−4

10−2

100

of bit-flips

P
ro

b
ab

ili
ty

[%
]

CRC-32

MISR-32

(a) Probability density function for q(j, 1).

0 10 20 30 40 50
0

2

4

6

8

10

Instructions (t)
#

o
f

b
it

-fl
ip

s

CRC-32

MISR-32

(b) Min. # of bit-flips for collision.

Fig. 2: Comparison between CRC-32 and MISR-32.

Choosing the Signature Function. Classical choices for checksums in the
setting of fault-tolerant computing are cyclic redundancy checks (CRCs) and
multiple-input signature registers (MISRs) with various polynomials. MISRs as
well as CRCs fulfill the mentioned requirements. However, they are not equally
suited when fault attacks with high control over the injected fault are considered.

For the evaluation of different signature functions, we evaluated the number
of bit-flips required to introduce a fault on one instruction∆Ij and to compensate
it with a fault on a subsequent instruction∆Ij+t . The sum of the bit-flips required
for both faults q(j, t) = HW (∆Ij) + HW (∆Ij+t) is a measure for the attack
complexity. The quality function q has been chosen in this way to take into
account that exact knowledge of the injected fault is needed in order construct
and subsequently inject the compensating fault. Average as well as worst-case
performance is important when fault attacks are considered.

A comparison between the signature functions CRC-32 and MISR-32 (iden-
tical polynomial) based on the probability density function of q(j, t) at t = 1 is
shown in Figure 2a. CRC-32 as well as MISR-32 have an expected number of
bit-flips of 32. The expected value for q(j, t) in general is identical to the degree
of the reduction polynomial for both MISR and CRC codes. Performance in the
average case is therefore identical which makes them equally suited for soft error
detection.

The worst-case performance on the other hand is different. The comparison
in Figure 2b (min(q) ∀∆Ij ,∀∆Ij+t

) shows that the CRC-32 is superior to the
MISR-32 regarding worst-case performance. The used CRC enforces that at least

7 bit-flips are needed in order to construct a collision. The MISR on the other
hand can already be defeated using 2 bit-flips within the first 31 instructions.
This weakness is caused by the simple structure of the MISRs which makes them
not suited as signature functions in the fault attack context. A more extensive
comparison between various polynomials regarding worst-case performance can
be found in Table 1.

Table 1: Performance (min(q) ∀t = [1, 50],∀∆Ij ,∀∆Ij+t) of different polynomi-
als. The polynomials are given in reversed representation.

Type Polynomial min(q) t

CRC-8 0xAB 2 11

CRC-16-ARINC 0xD405 4 10
CRC-16-CCITT 0x8408 4 1
CRC-16-CDMA2000 0xE613 4 32
CRC-16-DECT 0x91A0 2 15
CRC-16-T10-DIF 0xEDD1 4 7
CRC-16-DNP 0xA6BC 2 9
CRC-16-IBM 0xA001 4 1

CRC-32 0xEDB88320 7 11
CRC-32C (Castagnoli) 0x82F63B78 8 2
CRC-32K (Koopman) 0xEB31D82E 6 34
CRC-32Q 0xD5828281 8 2

MISR-32 0xEDB88320 2 1

3.2 Update Function Selection

The second function which is required in GPSA and CSM implementations is
the so-called update function. This function is needed in order to balance the
various paths through the control-flow graph. The update function u calculates
the next signature Sj+1 = u(Sj , Jj) based on the preceding signature Sj and a
justifying signature constant Jj . The update function has to fulfill the following
requirements in order to be usable for GPSA.

– Full control : All possible signature values Sj+1 have to be constructible given
an arbitrary Sj and a justifying signature Jj . Note that, the size of J must
be larger or equal to S (|J | ≥ |S|) to modify each bit in S.

Sj+1 = u(Sj , Jj), ∀Sj+1,∀Sj ,∃Jj (5)

– Error preservation: An error, absorbed into the signature Sj ⊕ ∆Sj
, must

not be eliminated by an error-free justifying signature (∆Jj = 0). It would
otherwise not be possible to arbitrarily delay the actual checking.

Sj+1 ⊕∆Sj+1
= u(Sj ⊕∆Sj

, Jj), ∀∆Sj
6= 0→ ∆Sj+1

6= 0 (6)

Cortex-M3

ExecuteDecodeFetch

ALU MUL/
DIV

Code
Addr.

CodeIn

Address

DataInRegister File

DataOut

Fetch
Controller

Address
Generation

Unit

System Address
Space

Signature
Monitor

RAM

Peripherals

Fetched
Instructions

Reference
Signatures
for CSM

Controller

f u

 signature

Fig. 3: Simplified Cortex-M3 architecture with grey-shaded modifications.

– Invertibility : Given Sj+1 and Sj , it must be possible to efficiently compute
the justifying signature Jj .

Jj = u−1(Sj , Sj+1), ∀Sj ,∀Sj+1 (7)

A simple function which fulfills all those requirements is the binary xor function.

4 Prototype Implementation

We implemented GPSA and CSM on the basis of a state-of-the-art microproces-
sor architecture (an ARM Cortex-M3) and modern compiler technology (LLVM).
The resulting implementation supports all C language features and common
programming practices. Our prototype implementation is therefore not only a
theoretic construct, but practically usable. The implementation supports sepa-
rate compilation of C files and enables the use of static libraries. It also allows
to randomize the signature values of identical programs (diversity) on different
devices. This makes it harder to extend attacks against an individual towards
multiple devices.

In this section, we discuss the necessary hardware modifications (which are
minimal), the necessary modifications of the to-be-protected software, and elab-
orate on the modifications of the toolchain.

4.1 Hardware Architecture

The presented implementation is based on the ARM Cortex-M3 microprocessor
architecture. Its performance-to-energy ratio makes this processor an interesting
candidate for many embedded application areas, including smart-card applica-
tions. Hence, they are often used in malicious environments. The processor uses

3 pipeline stages to implement the ARMv7-M instruction set that supports both
Thumb and Thumb-2 instructions.

As depicted in Figure 3, the Cortex-M3 was extended with a memory-mapped
signature monitor which is tightly integrated into the design. This monitor auto-
matically computes |S| = 32-bit signatures absorbing the 16–32-bit large Thumb
and Thumb-2 instructions Ij . The CRC-32C code has been implemented as sig-
nature function based on the analysis presented in Section 3.1. Via the memory
interface, the monitor enables the CPU to perform signature updates, signature
replacements, and signature assertions. Assertion failures can either trigger an
interrupt or reset the system.

To support the automatic computation of derived signatures, the CPU only
had to be modified to forward the currently executed instruction to the monitor.
To perform continuous signature monitoring, the fetch unit of the processor was
modified. The signature bits are stored in a block at the end of the program.
The base address of this signature block has been embedded into the interrupt
vector table, similar like the initial stack pointer. At start-up, the base address
is automatically initialized. During run-time, the fetch unit always loads the
instructions in combination with the reference values. An instruction is only
forwarded to the decode stage, once both the instruction and the reference value
are valid.

4.2 Source Code Modifications

All signature modifications are performed in software, which in turn are mon-
itored by the derived-signature monitor in hardware. Performing the necessary
software transformations manually is a challenging and error prone task. It is
clearly favorable to automatically perform the transformations within the tool-
chain, which makes the whole instrumentation process transparent for the pro-
grammer. Consequently, modifications of the application C source code are min-
imal. In the best case, a to-be-protected software does not have to be modified
at all.

The programmer can insert vertical signature checks in the form of
assert signature() function calls into critical sections of the program. All
remaining work is performed by the compiler which automatically replaces these
function calls with actual signature checks. The use of function calls for the
annotation has the advantage that clang, LLVM’s C front end, can be used
without any modification.

Assembly code on the other hand requires a little more work (as usual). The
programmer has to place signature updates by hand when branches, loops, and
function calls are encountered. However, no actual derived signature calculation
has to be performed by the programmer. Additionally, if the programmer forgets
a signature update, the toolchain will automatically notify her.

4.3 Software Modifications

Related work [1], [8], [9], [13] usually performs the software transformations ei-
ther during compilation or by applying a dedicated post-processing tool after
linking. In this work, both techniques are combined in order to generate a pro-
tected executable. The compiler is responsible to insert signature updates based
on GPSA and to insert signature assertions. A post-processing tool consecutively
computes the derived signatures and patches the executable with signature up-
date and reference values.

LLVM Compiler Modifications. The compiler has been built using the
LLVM compiler infrastructure which already has great support for the targeted
ARMv7-M architecture.

A machine function pass has been added to the ARM back-end in order to
perform the following transformations:

– Insertion of asserts: Every call to the assert signature() function is re-
placed by an actual vertical signature check. A signature check is performed
as a memory-write operation of the expected signature to a certain pre-
defined monitor address and is composed of three instructions. (LOAD ad-
dress, LOAD value, STORE value)

– Insertion of signature updates: Signature updates are inserted to make the
runtime signature independent of the executed path through the control-
flow graph. The placement of signature updates is performed efficiently by
computing the spanning tree of a function’s undirected control-flow graph.
Signature updates are, similar to checks, a write of the justifying signature
to the memory mapped monitor.

The smart placement of the machine function pass in the optimization pipeline
allows us to reuse much of the original compiler’s functionality and therefore
benefit from the available optimizations as well. Register allocation is for example
still handled using stock LLVM functionality.

An additional component which had to be adapted is the run-time library.
The compiler relies on its functions for standard operations (e.g., clearing mem-
ory) or to perform computations which are not natively supported by the pro-
cessor (e.g., floating-point operation). It was therefore necessary to instrument
this library with justifying signature updates in order to generate a working
GPSA-hardened program.

Post Processing Tool. As a result, the compiler generates a binary with all
necessary signature updates/assertions that still lacks the correct signature con-
stants. The signature values can only be computed once the program is linked
and all instructions have been finalized. The compiler never has access to this
information in a traditional separate-compilation design-flow. We therefore per-
form the derived signature calculation using a post-processing tool.

A recursive disassembling [13] approach was used to recover the control flow
and the location of the signature constants within this post-processing tool.
LLVM’s disassembling machinery simplifies this step considerably. Based on the
control flow it is possible to identify the constant pools (aka constant islands) in
the binary. Tracking the monitor’s addresses using data-flow analysis techniques
consecutively reveals the location of the instructions which modify the signature
values.

The actual calculation of the derived signatures relies on all this recovered
information. The signature values are computed by initializing each function
with a random initial signature, and consequently flooding the control-flow graph
of each function. As a result, all justifying signatures, assertion constants, and
reference signatures for the CSM are embedded into the executable.

Another feature of the post-processing tool is its static code analysis func-
tionality of the binary. Only correctly instrumented binaries pass the derived
signature calculation. Error messages notify a programmer about wrongly in-
strumented assembly code.

5 Evaluation

As this is the first published, practical implementation of both GPSA and CSM
in the context of fault attacks, we are excited to report performance results based
on qualitative characteristics as well as practical benchmarks.

5.1 Error-detection Coverage

Based on the previously stated requirements on the signature functions, every
single fault on the instruction stream changes the runtime signature with cer-
tainty. Using vertical checks, any runtime-signature error can be detected. On
the contrary, CSM checks h bits of the runtime signature per cycle. Therefore,
the probability to detect an error is 1− 2−h. As any error propagates within the
signature register, the probability to detect an error is way beyond 99.9 % after
3 checks of h = 4 bits.

If an attacker targets two instructions, she could possibly hide the error by
colliding the signature value. It was shown in Section 3.1 that the attacker has
to flip 32 bits on average or 8 bits in his best case when a CRC-32C is used
as signature function. Even using advanced attack setups, the probability for
introducing a fault with precise bit-flips across multiple cycles is very low.

5.2 Error-detection Latency

An error can only be detected at the time of the vertical signature check when
GPSA is used without CSM. It is up to the programmer to insert these vertical
checks next to the critical pieces of code. This allows to perform very controlled
checks and consecutively reduces overhead. However, it is possible that, due to

bad check placement, vertical signature checks by itself detect an error once it
already has been exploited.

CSM solves this problem given that it checks parts of the signature register
after every executed instruction. With an increasing probability any error is
detected after a few iterations.

5.3 Monitor Complexity

One of our design goals was to only introduce minimal hardware overhead. All
operations beside derived signature calculation are performed entirely in soft-
ware. We evaluated the monitor complexity after synthesis for UMC’s 130nm
Low Leakage process using Cadence 2009 tools. The standard cell library for this
process comes from Faraday. Without the monitor, our Cortex-M3 is 36,957 GE
large. Adding the monitor for GPSA increases the size of the processor by only
1,469 GE, respectively by less than 4 %. Adding support for CSM additionally
increases the size of the fetch unit which results in a total core size of 39,319 GE.
The modifications to support GPSA and CSM therefore are minimal and account
to merely 6.4 % hardware overhead.

5.4 Memory Overhead and Processor-Performance Loss

Memory overhead and processor-performance loss highly depend on the exe-
cuted program. These characteristics are mainly determined by the number of
branches, function calls, and vertical signature checks.

Qualitatively speaking, a single signature update costs around 10 bytes of
memory and 6 cycles in our software-centered implementation. A function call
costs around 14 bytes of memory and 10 cycles. Using CSM, the introduced
redundancy is proportional to the size of the code within the text section of the
executable. For h = 4 per 16-bit Thumb instruction, up to 25 % of redundant
NVM has to be added.

For a quantitative, empirical evaluation, we tested multiple programs: a core-
mark benchmark (one iteration), an AES-256 roundtrip (encryption followed by
decryption with check), and a 160-bit elliptic curve cryptography (ECC) example
performing a scalar multiplication with optional assembly-optimized finite-field
arithmetic. The coremark benchmark has been optimized for speed (-02) given
that this yields the best performance. The crypto algorithms have been optimized
for size (-0s). Additionally, link-time garbage collection (-ffunction-sections
-fdata-sections and -Wl,-gc-sections) has been used to preserve only the
absolutely necessary code and data segments. A synthesizeable VHDL model of
the hardware, evaluated using Cadence NC Sim, has been used to execute the
benchmarks.

The raw numbers and the relative overhead in terms of runtime as well as
RAM and NVM size are summarized in Table 2. The evaluation was performed in
two steps. First, our GPSA implementation is compared against the unmodified
LLVM backend which is used as baseline. Second, CSM is compared with the
GPSA version given that it extends GPSA’s checking capabilities.

RAM. The RAM overhead of GPSA is below 10 % in all eveluated programs.
For coremark it is even merely 3 %. This overhead is solely a side effect of the
increased register pressure during function calls. The additional live variables
force the compiler to spill more values and therefore slightly increase the memory
usage on the stack. Using CSM on top of GPSA introduces no additional RAM
overhead given that the code itself stays absolutely unchanged.

NVM. Overhead on the NVM side ranges from 29 % for the AES test case to
79 % for ECC. This overhead is composed of the actual signatures (justifying
+ reference) and the added code for signature updates and vertical checks. In
this software-centered implementation, the majority of the overhead is code. The
signatures account for 25 % NVM overhead at most.

The NVM overhead of CSM over GPSA on the other hand is purely signature
based. Only minor optimization potential remains.

Runtime. The most remarkable figure in this evaluation is probably the runtime
overhead. The overhead of GPSA ranges from 2 % for optimized ECC to 57 % for

Table 2: Empirical Results for GPSA and CSM regarding RAM, NVM, and
runtime overhead. Additionally, the NVM overhead solely for justifying and ref-
erence signatures is given.

Program RAM NVM Runtime Justifying Reference
Byte Byte Cycle Sigatures Sigatures

Baseline

Coremark 2,444 9,384 547,294 — —
AES-256 248 3,212 48,581 — —
ECC 444 4,036 4,251,697 — —
ECC w/ ASM 400 4,824 2,836,180 — —

Overhead of GPSA (Relative to Baseline)

Coremarka 2.3 % 69.0 % 56.7 % 23.5 % 0.1 %

AES-256b 9.6 % 29.0 % 36.7 % 10.8 % 0.5 %
ECCc 9.0 % 78.9 % 33.3 % 24.5 % 0.3 %
ECC w/ ASMc 8.0 % 53.5 % 1.9 % 16.3 % 0.2 %

Overhead of CSM with h = 4 bit (Relative to GPSA)

Coremarka — 22.2 % 8.9 % — 22.2 %

AES-256b — 19.3 % 6.5 % — 19.3 %
ECCc — 21.9 % 7.6 % — 21.9 %
ECC w/ ASMc — 22.6 % 0.4 % — 22.6 %

a One vertical signature check before and one after the benchmark.
b One vertical signature check after every round of AES.
c One vertical signature check after every processed bit of the scalar.

1 2 4 8 16

0

5

10

15

20

h-bit Horizontal Signature

R
u
n
ti

m
e

O
v
er

h
ea

d
[%

]

Coremark

AES-256

ECC

ECC w/ ASM

Fig. 4: Runtime overhead of CSM with different horizontal signature sizes (h-bit).
(Relative to GPSA)

coremark. The software-centered approach taken in this implementation is again
one of the reasons for these high values. Each GPSA operation takes between
6 and 10 cycles. Adding more hardware support could bring this values down
to around 2 cycles. However, even without additional hardware much better
results can be achieved. The 31.4 % difference between the ECC programs show
that there is still a lot of optimization potential on the compiler side as well.
Implementations of cryptographic primitives should be protectable at hardly any
cost given that their control flow is typically very sequential.

Enabling CSM on top of GPSA implies an additional overhead of up to 9 %.
However, this is rather low considering that horizontal signatures with 4-bit
(25 % redundancy per instruction) are used. Figure 4 shows how the runtime
overhead of CSM scales in dependence of the horizontal signature size h. Most
astonishing is probably that the overhead is still below 21 % even at 100 % re-
dundancy (16-bit per instruction). The processor’s Harvard architecture and the
combination of 32-bit bus and 16-bit instruction set makes this possible.

6 Conclusion

This work extends the CFI concepts of Wilken and Shen from the soft error to
the fault attack context. To achieve this goal we not only analyzed the functional
requirements for derived signature calculation, but also performed an evaluation
of actual signature functions. Using a CRC with suitable polynomial, any error
in a single cycle and at least 7 bit-flips, spread across two cycles, can be detected
with certainty.

We further practically implemented the derived signature based GPSA and
CSM techniques for a state-of-the-art processor, the ARM Cortex-M3. Addition-
ally, a toolchain for this platform has been created utilizing the LLVM compiler
infrastructure. This toolchain incorporates all necessary transformations and is
completely transparent for the programmer. As a result, arbitrary C programs
can be protected by simple compilation. The design’s low hardware overhead
and the good detection capability indicates that the combination of GPSA and
CSM is well suited to protect the control flow in the context of fault attacks.

7 Acknowledgements

This work has been supported by the Austrian Research Promotion Agency (FFG)
under grant number 845579 (MEMSEC).

References

1. Abadi, M., Budiu, M., Erlingsson, Ú., Ligatti, J.: Control-flow Integrity Princi-
ples, Implementations, and Applications. ACM Trans. on Information and System
Security (TISSEC) pp. 4:1–4:40 (Nov 2009)

2. Arora, D., Ravi, S., Raghunathan, A., Jha, N.: Hardware-Assisted Run-Time Mon-
itoring for Secure Program Execution on Embedded Processors. IEEE Trans. on
VLSI Systems 14(12), 1295–1308 (Dec 2006)

3. Boneh, D., DeMillo, R.A., Lipton, R.J.: On the Importance of Checking Crypto-
graphic Protocols for Faults. In: Advances in Cryptology, pp. 37–51. No. 1233 in
LNCS, Springer (1997)

4. Free60.org: (2012), http://free60.org/wiki/Reset_Glitch_Hack
5. Joye, M., Tunstall, M. (eds.): Fault Analysis in Cryptography. No. 1619-7100 in

Information Security and Cryptography, Springer (2012)
6. Lalande, J.F., Heydemann, K., Berthomé, P.: Software countermeasures for control

flow integrity of smart card C codes. In: Computer Security-ESORICS 2014, pp.
200–218. Springer (2014)

7. Namjoo, M.: Techniques for Concurrent Testing of VLSI Processor Operation. In:
International Test Conference. pp. 461–468. IEEE (Nov 1982)

8. Rodŕıguez, F., Campelo, J.C., Serrano, J.J.: A Watchdog Processor Architecture
with Minimal Performance Overhead. In: Computer Safety, Reliability and Secu-
rity, pp. 261–272. No. 2434 in LNCS, Springer (2002)

9. Rodŕıguez, F., Serrano, J.J.: Control Flow Error Checking with ISIS. In: Embedded
Software and Systems, pp. 659–670. No. 3820 in LNCS, Springer (2005)

10. Wilken, K.D., Shen, J.P.: Continuous signature monitoring: efficient concurrent-
detection of processor control errors. In: New Frontiers in Testing. pp. 914–925
(Sep 1988)

11. Wilken, K.D., Shen, J.P.: Continuous signature monitoring: low-cost concurrent
detection of processor control errors. IEEE Trans. on Computer-Aided Design of
Integrated Circuits and Systems 9(6), 629–641 (Jun 1990)

12. van Woudenberg, J.G.J., Witteman, M.F., Menarini, F.: Practical optical fault
injection on secure microcontrollers. In: Fault Diagnosis and Tolerance in Cryp-
tography (FDTC). pp. 91–99. IEEE (Sept 2011)

http://free60.org/wiki/Reset_Glitch_Hack

13. Zhang, M., Sekar, R.: Control Flow Integrity for COTS Binaries. In: Proceedings
of the 22nd USENIX Conference on Security. pp. 337–352. SEC, USENIX Associ-
ation, Berkeley, CA, USA (2013)

	Protecting the Control Flow of Embedded Processors against Fault Attacks
	Introduction
	Control-Flow Integrity in Fault-Tolerant Computing
	Control-Flow Integrity
	Derived Signatures
	Generalized Path Signature Analysis
	Continuous-Signature Monitoring

	Control-Flow Integrity in the Setting of Fault Attacks
	Signature Function Selection
	Functional Requirements.
	Choosing the Signature Function.

	Update Function Selection

	Prototype Implementation
	Hardware Architecture
	Source Code Modifications
	Software Modifications
	LLVM Compiler Modifications.
	Post Processing Tool.

	Evaluation
	Error-detection Coverage
	Error-detection Latency
	Monitor Complexity
	Memory Overhead and Processor-Performance Loss
	RAM.
	NVM.
	Runtime.

	Conclusion
	Acknowledgements
	References

