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Abstract. The decision regarding the best suitable microprocessor for a
given task is one of the most challenging assignments a hardware designer
has to face. In this paper, we make a comparison of cycle-accurate VHDL
clones of the 8-bit Atmel ATmega, the 16-bit Texas Instruments MSP430,
and the 32-bit ARM Cortex-M0+. We investigate their runtime, chip
area, power, and energy characteristics regarding Elliptic Curve Cryp-
tography (ECC), one of the practically most resource-critical public-key
cryptography systems. If ECC is not implemented with greatest care,
its implementation can lead to excruciating runtimes or enable practi-
cal side-channel attacks. Considering those important requirements, we
present a constant runtime, side-channel protected, and resource sav-
ing scalar multiplication algorithm. To tap the full potential of all three
microprocessors, we perform assembly optimizations and add carefully
crafted instruction-set extensions. To the best of our knowledge, this is
the first thorough software and hardware comparison of these three em-
bedded microprocessors.

Keywords: ATmega, MSP430, Cortex-M0+, Elliptic Curve Cryptogra-
phy, Instruction-Set Extension, Software and Hardware Evaluation.

1 Introduction

Motivation. It is a well-known fact that embedded microprocessors play a sig-
nificant role within a huge number of consumer, industrial, commercial and mil-
itary applications. Microprocessors are being produced and deployed in huge
numbers and are the beating heart of, e.g., smart cards, wireless sensor net-
works, or in future even RFID tags. Those applications require solutions that are
highly optimized in order to be cheap, energy-efficient, and/or power-efficient,
while being versatile and delivering the necessary performance.

To meet all these requirements, the high demands of security and cryptogra-
phy have too often been disregarded. Especially public-key cryptography needs
to be implemented with great care in order to achieve small, performant, and
energy-saving solutions. Since RSA and ElGamal based crypto systems simply
require too much memory, Elliptic Curve Cryptography (ECC) seems to be the
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best choice. However, ECC is a highly demanding challenge within most appli-
cations, and therefore the decision regarding the most suitable microprocessor
usually is the most discussed topic within a hardware manufacturer. To evaluate
the performance of ECC in software and in hardware, we built VHDL clones of
three of the most popular microprocessors.

Related Work. The research community recognized the challenge of effi-
ciently implementing ECC. In this context, we want to cite [19, 20, 22, 33, 42,
45], just to name a few. Those papers presented and used a lot of different
approaches to improve the performance of ECC on embedded microprocessors.
Unfortunately, in many papers, the authors sacrifice practical crucial proper-
ties, e.g., the memory footprint or practical side-channel security threats for the
sake of fastest runtimes. Other characteristics like power and energy consump-
tions are also often neglected. Szczechowiak et al [42] is a welcome exception as
they presented measured power values for the ATmega and the MSP430 micro-
processor. However, how comparable are those values as both processors were
manufactured in different ASIC technologies by different vendors? A fair com-
parison of the investigated microprocessors must utilize a common design flow,
common technologies, and practically secured software implementations.

Our Contribution. In this paper, we perform a systematic and comprehen-
sive approach to evaluate ECC on cycle-accurate VHDL clones1 of three of the
most popular microprocessors: the 8-bit Atmel AVR ATmega, the 16-bit Texas
Instruments MSP430, and the 32-bit ARM Cortex-M0+. Our contribution is
composed of the following points:

– We derive a point multiplication methodology from previous work which is
light-weight and secure against (most) side-channel attacks. The resulting
algorithm can be applied to any future embedded designs.

– All our software implementations for the three processors are secure against
side-channel attacks and highly optimized using state-of-the-art multi-
precision integer multiplication techniques. Runtime, chip area, power,
and energy results are given for four different standardized elliptic curves
(secp160-192-224-256r1).

– We built three cycle-accurate clones of three of the most popular micro-
processors and evaluate them in an 130 nm ASIC manufacturing process.
The hardware models are based on publicly available design documents and
software simulators. It is quite unlikely that Atmel, Texas Instruments, or
ARM would have given us their cores for such a comparison. Their chips are
produced in different technologies, so any comparison of actual chips is im-
practicable for our purposes. Regarding code quality, we want to emphasize
that Atmel, Texas Instruments, and ARM use similar libraries and tools as
we do. Therefore our designs are probably very close to the real deal.

– We are the first to integrate instruction-set extensions (ISE) in actual clones
of those microprocessors. The only common denominator of those three pro-
cessors is the 16-bit instruction-set. In every other key aspect, they differ (e.g.

1 Closed source for now, done by the authors.
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8, 16, 32 bit datapaths, Harvard/Von Neumann architecture, ...). Therefore
the multiply-accumulate ISEs have to be carefully crafted for each CPU core.

– We are the first to optimize ECC on the Cortex-M0+.
– Our results represent state-of-the-art of side-channel protected, fast, light-

weight, and standardized asymmetric cryptography for embedded processors.

The paper is structured as follows: Section 2 presents and analyzes the side-
channel protected elliptic-curve point multiplication algorithm. Within Section 3
the three processors are reviewed and compared on an architectural level. Sec-
tions 4 and 5 summarize the assembly and instruction-set optimizations. A rig-
orous analysis of all implementation results is performed in Section 6. Section 7
concludes the paper.

2 Elliptic Curve Cryptography

When implementing elliptic curve cryptography, a designer has a multitude of
options. In the following we present an algorithm for the point multiplication
which was chosen based on four characteristics:

– It is easy to tamper with embedded microprocessors. Timing attacks,
power-analysis attacks and fault-analysis attacks are a real and omnipresent
danger. For that matter we will not claim to be secure against all kinds of at-
tacks, but by choosing a methodology that is aware of many kind of attacks,
we emphasize the practical significance of the results presented later.

– ECC is a feature. Unlike, e.g., the work in [42] (Comb method with window
size w = 4), we think that only a small fraction of the available program and
data memory resource should be used for ECC so that the actual application
is not hindered in its operation. Therefore we choose a point-multiplication
formula which does not allocate the whole memory for pre-computed or
temporary points. Reduced memory requirements further allows hardware
designers to save money by equipping the chip with smaller memories.

– Standards were made to be used and simplify the interoperability of prod-
ucts. Thus, by choosing a NIST [35] or SECG [7] standard, any company can
be sure that their product is compatible with products from other vendors.

– Achieving a high speed is an ubiquitous goal of nearly every designer. By
getting the most out of an available hardware, one reduces latency times
(important in real-time protocols) and saves energy (important for battery-
powered devices and from an economic point of view). As we do not sacrifice
our security requirements for speed, we concentrate on improving the finite-
field operations by doing assembly and instruction-set optimizations.

In Algorithm 1, we present the point multiplication formula used for all our
practical evaluations. A detailed analysis of Algorithm 1 is given in Appendix A.
Our goal was to design an algorithm which can be used for Diffie-Hellman key
exchanges (DHKE) and elliptic-curve based signatures (ECDSA [35]), which
are the major features embedded applications actually require. The algorithm
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Algorithm 1 Elliptic curve point-multiplication algorithm used for evaluation.

Input: Domain parameters, secret scalar k with MSB = 1, point P = (x, y).
Output: R = k × P
1: if y2 6= x3 + ax+ b then Perform Error Handling

2: (X,Y, Z)← (x · λ, y · λ, λ) . Randomize Projective Coordinates
3: if Y 2Z 6= X3 + aXZ2 + bZ3 then Perform Error Handling

4: Q[0]← (X,Z), Q[1]← 2 · (X,Y, Z) . Initial Point Doubling
5: for i = |k| − 2 downto 0 do . Montgomery Ladder
6: Q[ki]← Q[ki] +Q[ki ⊕ 1]
7: Q[ki ⊕ 1]← 2 ·Q[ki ⊕ 1]
8: end for
9: (X,Y, Z)← y-recovery(Q[0], Q[1])

10: if Y 2Z 6= X3 + aXZ2 + bZ3 then Perform Error Handling

11: R = (x, y)← (XZ−1, Y Z−1)
12: if y2 6= x3 + ax+ b then Perform Error Handling

is using a Montgomery ladder [34] with Randomized Projective Coordinates
(RPC) [10] and multiple point validation (PV) checks. After an initial PV check
the coordinates are randomized. In step 3, the point is again checked within the
projective coordinates. A fault attack on the randomized projective coordinates
is much more complex. Then, an initial point doubling within the RPC is per-
formed. The double of the original point is needed for the following Montgomery
ladder. Here we use the common-z interleaved point addition and doubling for-
mulas by Hutter, Joye, and Sierra [25]. As this is the most costly part of the
algorithm, no PV checks are performed within it. For the following recovery
of the y-coordinates, both Q[0] and Q[1] are used. Another two PV checks are
performed before and after the inversion of the Z-coordinate. One may argue
that several of the PV checks are redundant, but because they hardly have any
impact on the speed, we perform them anyways.

Runtimes of all finite-field operations are constant and data-independent.
Therefore, a finite-field inversion was implemented based on Fermat’s little the-
orem (inversion by exponentiation). Particularly, the algorithm is based on the
exponentiation trick by Itoh and Tsujii [27]. Although this trick is usually applied
to elliptic curves over binary fields, we utilize it to optimize the inversion for the
standardized Mersenne-like primes, nearly halving the number of multiplications
needed for an exponentiation with a fixed exponent.

Summarizing, it is important to utilize the available resources. Therefore a
detailed knowledge of the used microprocessors is necessary to achieve competi-
tive results. Section 3 discusses the characteristics of the investigated embedded
microprocessors.

3 Microprocessor Architectures

This paper focuses on three of the most popular embedded microprocessors: the
8-bit Atmel ATmega AVR, the 16-bit Texas Instruments MSP430 and the 32-
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bit ARM Cortex-M0+ microprocessors. All of them were designed for embedded
applications, in which price and power consumption matter more than the max-
imum clock speed or the amount of available data or program cache. In fact,
those RISC processors do not have any cache. In this section, we introduce the
three processor architectures and discuss their capabilities relevant for ECC.

Atmel ATmega AVR series. In 1996, two students from the Norwegian
Institute of Technology developed the first AVR processor. Today, designers can
choose from a vast range of descendants. Especially the ATmega series [2] has
been and is used in a magnitude of commercial products.

The ATmega is a 8-bit RISC processor with separated program, data, and
I/O memory buses (Harvard architecture). It comes with 32 general-purpose reg-
isters (GPR) and 91 (133 including simulated) instructions. To perform integer
arithmetic, operands need to be loaded (2 cycles) to the GPRs, processed within
the GPRs, and stored back (2 cycles) to the data memory. A for multi-precision
integer arithmetic [9] interesting 8-bit multiply-accumulate operation (LD, LD,
MUL, ADD, ADC, ADC) takes 9 cycles.

Texas Instruments MSP430 series 1. One of the most successful, direct
competitor of the ATmega is the MSP430 processor series [43] by Texas Instru-
ments. With its six low-power modes it is most interesting for low power, and
low-energy applications. This is why it is used for many wireless sensor nodes
such as the EPIC Mote, TelosB, T-Mote Sky, and XM1000 platforms.

The original series-1 MSP430 is a 16-bit RISC processor with a single com-
bined data and program bus. Merely 12 of its 16 16-bit registers are actually
usable as general-purpose registers. The MSP430 series comes with a fully or-
thogonal instruction set of only 27 instructions with 7 addressing modes. Unfor-
tunately, there is no dedicated multiplication instruction, but a memory mapped
16× 16→ 32-bit multiplier, with multiply-accumulate feature, is available. De-
spite the high costs introduced by transfering the operands from data memory
to the multiplier, a 16-bit multiply-accumulate operation (MOV, MOV, NOP, ADD)
can be performed in 13 cycles.

ARM Cortex-M0+ series. In the recent years, ARM made a name for
itself with supplying smart phones and tablets with powerful energy-saving pro-
cessors, namely the Cortex-A series. For embedded applications however, Cortex-
M series processors are more suitable. The Cortex-M0+ embedded microproces-
sor [1] is the smallest, most energy-efficient ARM ever built and supports a
subset of the Thumb-2 instruction-set. This 32-bit RISC processor is designed
as direct competitor for the ATmega and MSP430 processors. Launched in 2012,
major companies (e.g., Freescale [15], Fujitsu [16], or NXP [36]) just started to
introduce the Cortex-M0+ to their lineups.

Similar to the MSP430, the Cortex-M0+ comes with a Von Neumann archi-
tecture. Its 32-bit address and data buses enable the addressing of up to 4 GByte
of data, preparing it perfectly for future memory requirements. Exactly 13 of its
16 32-bit registers can be used as general-purpose registers, but most of its 56
instructions can only access the lower 8 registers R0–R7. Registers R8–R15 are ac-
cessible through a MOV instruction only. Optionally, the Cortex-M0+ comes with
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Table 1. Summary of the embedded microprocessors.

Characteristic ATmega MSP430 (1 Series) Cortex-M0+

Data-Width 8 bits 16 bits 32 bits
Instruction-Word Size 16 bits 16 bits 16 bits
Architecture Harvard Von Neumann Von Neumann
General-Purpose Registers 32 12/16 8/13/16
Number of Instructions 81 27 56
Max. Data Memory 16 kByte 10 KByte 4 GByte
Max. Program Memory 256 kByte 60 KByte 4 GByte
Multiply Accumulatea 9 cycles 13 cycles 29 cycles

Used Clone JAAVR [47] IDLE430 [50] Xetroc-M0+ [44]

Core areab 6,140 GE 4,913 GE 15,262 GE
Registers 2,002 GE 1,732 GE 4,176 GE
Multiplier 372 GE 1,751 GEc 2,766 GE

a Load two operands, multiply and accumulate them.
b Including memory arbiter and necessary special function registers.
c Memory mapped and therefore not part of the core area.

a bit-serial or a single-cycle 32 × 32 → 32-bit multiplication instruction. Note
that for ECC, also the upper half of the product is necessary for multi-precision
integer arithmetic. In the following, we use this multiplier as 16 × 16 → 32-bit
multiplier. Section 4 illustrates the implementation of an efficient 29-cycle 32-bit
multiply-accumulate operation.

Summary of the Embedded Microprocessors. The common denomina-
tors of the three embedded microprocessors are that they are RISC processors,
support single-cycle register-to-register operations, and have 16-bit instruction
sets (with some 32-bit exceptions). The major differences are summarized in
Table 1. The three microprocessors utilize different architectures, have different
amounts of available registers, clearly distinct instruction sets and support dif-
ferent amounts of data and program memory. Those differences become apparent
when the actual hardware footprint is evaluated. Most remarkably, the 16-bit
MSP430 (4,913 GE) requires less chip area than the 8-bit ATmega (6,140 GE).
This is the price the ATmega has to pay for its three memory buses and the
vast instruction set. To efficiently perform integer multiplications, the MSP430
additionally needs a memory mapped multiplier which is 1,751 GE in size. Com-
pared to the ATmega and the MSP430, the 32-bit Cortex-M0+ is much larger.
It requires 15,262 GE in a configuration with a single-cycle 32-bit multiplier. The
optional 32-cycle bit-serial multiplier saves 1,363 GE which brings the Cortex-
M0+ to a minimum size of 13,899 GE in the used 130 nm UMC process.

Related Work. ARM specifies that their Cortex-M0+ is only 12 kGE large
in a 90 nm process. When synthesizing our clone in a 90 nm UMC process it
requires 12,436 GE. So in terms of area, our Cortex-M0+ is (as aimed for) very
close to the original. As neither Atmel nor Texas Instruments released char-
acteristics of their processors, we can only compare our clones to the versions
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uploaded to opencores.org. Compared to the openMSP430 [37], our MSP430
is 5, 958 − 4, 913 = 1, 045 GE smaller. Compared to other (insufficiently tested)
ATmega or AVR clones, our ATmega clone is similarly small.

4 Assembly Optimizations for ECC

As we already fixed the point arithmetic, we focus our effort on the finite-field
operations. Most crucial is the finite-field multiplication as it contributes to
90 % of the runtime of a point multiplication. Hence, optimizing the runtime of
the finite-field multiplication automatically improves the runtime of the point-
multiplication algorithm. Additionally, it leads to a speedup of the finite-field
squaring, exponentiation and inversion operation. To optimize the finite-field
multiplication, one can either perform assembly optimizations or extend the
instruction-set (see Section 5).

While the currently fastest multi-precision multiplication approaches for the
ATmega and the MSP430 are based on related work, it was necessary to come
up with a new technique for the Cortex-M0+ as it has not yet been investigated.

ATmega. In 2004, Gura et al. [22] presented an efficient multi-precision
multiplication method and applied it to the ATmega. Hutter and Wenger [26]
presented the “Operand Caching” method in 2011. It further reduced the number
of memory load operations at the cost of some memory store operations. As it
fully utilizes the available general purpose registers as caches and currently is
one of the fastest ways to perform multi-precision multiplications on an ATmega,
we used their technique.

MSP430. The MSP430 only has 12 useable GPRs, of which three registers
have to be used as pointers and further three registers are necessary for the ac-
cumulation of intermediate results. With the remaining six registers, we applied
the product-scanning technique by Comba [9]. This technique fully utilizes the
multiply-accumulate functionality of the memory-mapped multiplier. It was first
described by Gouvêa and López [19] and is fully tailored to the MSP430.

Cortex-M0+. ECC performance of the Cortex-M0+ has never been exam-
ined before. Most notable are the works of Aydos et al. [3], who optimized ECC
for an ARM7TDMI processor, and Bernstein and Schwabe [4], who optimized
the NaCl cryptographic library for a Cortex-A8. However, none of their work
had to deal with the limitations of a Cortex-M0+: Its multiplier only computes
32-bit products, most instructions are restricted to registers R0–R7, and, for most
instructions, the destination register must equal one of the source registers, i.e.
in each multiplication one of the operands is overwritten by the product.

We evaluated several multiplication techniques and finally settled for a
product-scanning multi-precision multiplication method. Its centerpiece is shown
in Algorithm 2: the two operand references are moved from registers R8 and R9

to R1 and R2. Consequently, we can load their values from the memory. Then,
five registers are available to perform four 16×16→ 32-bit multiplications (steps
9–13), whereby the 16-bit masking steps are performed only once (steps 5–7).
Steps 14–27 accumulate the four 32-bit products into the registers R3–R5.
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Algorithm 2 Multiply-Accumulate Operation on Cortex-M0+.

Input: R8 and R9 are pointers.
Output: R3, R4, R5 contain the sum.
1: MOV R1, R8

2: LDR R1, [R1, #offset1]

3: MOV R2, R9

4: LDR R2, [R2, #offset2]

5: UXTH R6, R1

6: UXTH R7, R2

7: LSR R1, R1, #16

8: LSR R2, R2, #16

9: MOV R0, R6

10: MUL R0, R0, R7 . Low–Low
11: MUL R6, R6, R2 . Low–High
12: MUL R2, R2, R1 . High–High
13: MUL R1, R1, R7 . High–Low

14: MOV R7, #0

15: ADD R3, R3, R0 . Low–Low
16: ADC R4, R4, R2 . High–High
17: ADC R5, R5, R7

18: LSL R0, R6, #16 . Low–High
19: LSR R2, R6, #16

20: ADD R3, R3, R0

21: ADC R4, R4, R2

22: ADC R5, R5, R7

23: LSL R0, R1, #16 . High–Low
24: LSR R2, R1, #16

25: ADD R3, R3, R0

26: ADC R4, R4, R2

27: ADC R5, R5, R7

The stack is used to temporarily store the product of the multi-precision
integer multiplication. Hence, we benefit from addressing relative to the stack
pointer and avoid moving the address to one of the registers R0–R7. In a second
step, a reduction is performed by taking advantage of the Mersenne-like primes.

Assembler Optimized Results. We did all assembly optimizations for
four standardized elliptic curves (secp160-192-224-256r1). In order to keep
the general view, Table 2 depicts the memory footprints, the runtimes for finite-
field operations and the point multiplication over the secp160r1 elliptic curve.

In terms of ROM size the processors behave converse their word sizes. The
implementation for the ATmega takes up 7,762 bytes in ROM, which is twice
as much as for the Cortex-M0+. This is mainly a result of the unrolled integer
multiplication. The MSP430 behaves well as it requires only 13% more ROM
than the Cortex-M0+. With respect to RAM, the ATmega (402 byte) and the
Cortex-M0+ (404 byte) perform similarly, consuming about 40% more RAM
than the MSP430 (290 byte). The increased RAM footprint of the ATmega is
due to the elliptic curve constants that need to be loaded to the RAM at startup.
The root of the increased memory usage of the Cortex-M0+ lies within its calling
hierarchy. Each PUSH operation stores four bytes of data within the RAM. These
facts combined make the MSP430 an economic platform in terms of memory
footprint and chip area.

Impressingly, the finite-field addition on the Cortex-M0+ is 2.6 times
faster than an addition on the MSP430. The main reason for that is the load-
multiple LDM instruction of the Cortex-M0+, which allows loading multiple words
into several registers requiring only #words+1 cycles. The load LDR instruction
takes 2 cycles per word and therefore 2×#words cycles would be needed.
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Table 2. Benchmark data of assembly optimized implementations for secp160r1.

Processor ROM RAM Addition Mult. Inversion Point Mult. Core Area
[Bytes] [Bytes] [Cycles] [Cycles] [Cycles] [Cycles] [kGE]

Atmega 8,358 402 291 3,024 519,217 9,230,048 6,140
MSP430 4,788 290 163 1,905 327,366 5,779,957 7,003
CortexM0+ 4,256 404 62 942 162,500 2,809,619 15,262

Relative Performance

Atmega 1.96 1.46 4.69 3.21 3.20 3.29 1.00
MSP430 1.13 1.00 2.63 2.02 2.01 2.06 1.14
CortexM0+ 1.00 1.39 1.00 1.00 1.00 1.00 2.49

As the runtime of integer multiplication scales quadratically, one expects
the 32-bit Cortex-M0+ to be four times faster than the 16-bit MSP430 and the
16-bit MSP430 to be four times faster than the 8-bit ATmega. But they are not.
The Cortex-M0+ is only twice as fast as the MSP430. The reason for that is the
tremendous overhead needed to perform a 32× 32→ 64-bit multiplication using
the 32× 32→ 32-bit integer multiplier (see the highly optimized Algorithm 2).
But also the MSP430 is only 1.6 times faster than the ATmega. This is because
the MSP430 has a memory mapped multiplier and the ATmega has an integrated
multiplier.

By combining finite-field additions, multiplications, and inversions, the run-
times for secp160r1 point multiplications were obtained. They are 9.2 million
cycles for the ATmega, 5.8 million cycles for the MSP430, and 2.8 million cycles
for the Cortex-M0+. As the finite-field multiplication contributes to the majority
of this runtime, the ratios for the point multiplications are nearly identical to the
ratios of the finite-field multiplication. Equipping the Cortex-M0+ with a bit-
serial multiplier quadruples its runtime: With 11.9 million cycles the bit-serial
multiplier simply defeates the purpose of having a 32-bit processor. Hence, we do
not recommend implementing prime-field based ECC on a Cortex-M0+ without
single-cycle multiplier. Consequently, instruction-set extensions were equipped
to improve runtimes and to monitor how the performance ratios change.

5 Instruction-Set Modifications

We carefully crafted the VHDL clones of the ATmega, the MSP430, and the
Cortex-M0+ to be cycle-compatible with its originals. During that process, we
also observed some minor shortcomings regarding their respective potentials.
This section is all about maximizing the performance by improving the runtime
of existing instructions and adding multiply-and-accumulate [21] instructions.
This MULACC instruction is optimal for multi-precision multiplication. It is used
to multiply two n-bit registers and add the 2n-bit product to three accumulation
registers. As the three processors differ significantly, MULACC had to be integrated
differently for each processor.

ATmega. Our modifications of the ATmega are based on Wenger [46]. In this
paper, we showed among other things how to improve load, store, and multiply
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Table 3. Benchmarks of processors with instruction-set modifications for secp160r1.

Processor ROM RAM Addition Mult. Inversion Point Mult. Core Area
[Bytes] [Bytes] [Cycles] [Cycles] [Cycles] [Cycles] [kGE]

Atmega 5,828 402 176 984 170,053 3,268,486 7,039
MSP430 3,898 286 150 718 123,939 2,445,508 7,197
CortexM0+ 3,088 408 62 369 64,859 1,231,946 18,700

Relative Performance of Modified Processors

Atmega 1.89 1.41 2.84 2.67 2.62 2.65 1.00
MSP430 1.26 1.00 2.42 1.95 1.91 1.99 1.02
CortexM0+ 1.00 1.43 1.00 1.00 1.00 1.00 2.66

Modified versus Assembly-optimized Implementations (Table 2)

Atmega −30.3% ±0.0% −39.5% −67.5% −67.2% −64.6% 14.6%
MSP430 −18.6% −1.4% −8.0% −62.3% −62.1% −57.7% 2.8%
CortexM0+ −27.4% 1.0% ±0.0% −60.8% −60.1% −56.2% 22.5%

instructions and execute them within a single cycle instead of two. Additionally,
we added a single-cycle multiply-and-accumulate instruction, which was com-
bined with the Operand-Caching multiplication method. In a special operating
mode, activated by writing a memory-mapped configuration register, the existing
MUL instruction is reinterpreted as MULACC instruction. Therefore, the software
toolchain does not need to be modified. In fact, the trick of having a special
mode for the instruction-set extension has also been applied for the MSP430
and Cortex-M0+.

MSP430. The advantage of the MSP430 is, that operands do not have to
be explicitly loaded to core registers before their usage. The drawback is that
the multiplier is only accessible via the memory. To get rid of this bottleneck,
we removed the memory-mapped multiplier (saved 1,751 GE) and added a dedi-
cated MULACC instruction within its core. Unfortunately, the 7 existing addressing
modes were insufficient for our purposes. By perfectly utilizing the pre-existing
auto-increment and a new auto-decrement addressing mode it is possible to load
two operands, multiply-and-accumulate the data, and update the addressing reg-
isters. To omit manual pointer updates completely, we combined the new MULACC

instruction with Wenger and Werner’s [49] zig-zag product-scanning multiplica-
tion method. Other modifications with less impact on the ECC runtime improved
move, jump, push, and call instructions by one to two cycles. This modifications
do not only minimize the overhead of the C-calling convention, but also poten-
tially improve the runtimes of any other algorithm run on the modified MSP430.

Cortex-M0+. As it is only possible to compute a 16 × 16 → 32-bit prod-
uct with the internal multiplier of the Cortex-M0+ and 29 cycles are necessary
to perform a 32-bit (c.f. Algorithm 2) multiply-and-accumulate operation, it is
specially important to equip the Cortex-M0+ with a MULACC extension. This
extension reduced the for the product-scanning important sequence of LDR, LDR,
MULACC instructions to mere 5 cycles. To save area, the pre-existing 32×32→ 32-
bit multiplier is reused and only extended to compute a 64-bit product. There-
fore, the MULACC extension did only cost 3.4 kGE.
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Results using Instruction-Set Modifications. In general, the core idea
of all modifications was to improve the performance without adding unnecessary
hardware. So the modifications of the ATmega (+14.8 %) and the Cortex-M0+
(+22.5 %) only marginally increased the size of the CPU cores. The effective size
of the MSP430 only increased by 2.8 %. The slow, memory-mapped multiplier
was approximately as large as the new dedicated datapath to multiply-and-
accumulate within a single cycle. While the size of the CPU cores increased, the
size of the program memory decreased by 19-30 %. The rather large unrolled in-
teger multi-precision multiplication functions shrunk significantly and therefore
the total chip areas actually decreased. However, the modifications only have
very little impact on data memory utilization.

As intended, the modifications achieve a massive speedup of multiplications
in the prime field (cf. Table 3). Throughout, the corresponding runtimes dropped
by 60%, with the highest speedup achieved on the ATmega (-67%). As inver-
sions are based on exponentiation to counteract side-channel attacks, the same
impressing speedup is found there. Accordingly, point multiplication runtimes
slumped by 65% on the ATmega and plunged by 57% on the others. Concerning
addition, there are no performance gains for the Cortex-M0+ and the MSP430.
Contrary to that, addition is performed 40% faster on the ATmega due to the
improved timings of the load and store operations. Relating runtimes of the three
modified processors, the Cortex-M0+ again achieves the best performance, being
between 2-3 times faster than its competitors. However, its advantage diminishes
slightly compared to the unmodified ATmega.

6 Discussion of Hardware Implementations

All our implementations for the three microprocessors, with and without
instruction-set modifications, and over four elliptic curves were tested for cor-
rectness using externally generated test vectors, synthesized in a Faraday UMC
130 nm low-leakage ASIC library, placed-and-routed, and power-simulated (us-
ing Cadence RTL Compiler, Cadence Encounter). The huge number of results
are accumulated within Table 4 and discussed in the following.

Memories. We used area-efficient single-port RAM macros as data memo-
ries and single-port Via-1 ROM macros as program memories. As their necessary
sizes depend on the ECC implementation, they were chosen appropriately for
each implementation. Experiments showed that synthesizing the program mem-
ories as standard logic cells resulted in smaller program memories after synthesis,
but there were two problems: Firstly, it was virtually impossible to place and
route the program memories without significantly decreasing the cell density,
which actually increased the effective size of the program memory. Secondly,
the ROM macros have a significantly lower power consumption compared to the
synthesized program memories.

Runtime. The runtime is measured at 10 MHz and visualized in Figure 1.
The time for a single, side-channel secured point multiplication varies between
123–923 ms. As expected, the 32-bit processor is faster than the 16-bit processor,
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Table 4. Summary of all experiments.

Processor Version Program Dataa Chip Area Power Energy Runtime
Memory Memory ROM RAM Core Total @10 MHz @10 MHz

[Bytes] [Bytes] [GE] [GE] [GE] [GE] [µW] [µJ] [ms]

secp160r1

ATmega ASM 8,358 402 11,807 3,754 6,140 21,701 545 503 923
MSP430 ASM 4,788 290 7,796 3,250 7,003 18,048 583 337 578
CortexM0+ ASM 4,256 404 8,270 4,308 15,262 27,840 718 202 281

ATmega ISE 5,828 402 8,202 3,754 7,039 18,995 666 218 327
MSP430 ISE 3,898 286 6,363 3,225 7,197 16,786 794 194 245
CortexM0+ ISE 3,088 408 6,416 4,334 18,700 29,450 1,306 161 123

secp192r1, NIST P-192

ATmega ASM 10,238 462 11,807 4,107 6,140 22,054 556 839 1,509
MSP430 ASM 5,408 330 8,202 3,475 7,003 18,679 581 533 918
CortexM0+ ASM 4,860 448 8,270 4,560 15,262 28,092 716 329 459

ATmega ISE 6,564 462 10,040 4,107 7,039 21,186 670 336 502
MSP430 ISE 4,142 330 7,796 3,475 7,197 18,468 801 283 353
CortexM0+ ISE 3,164 444 6,416 4,535 18,700 29,652 1,318 241 183

secp224r1, NIST P-224

ATmega ASM 12,570 526 15,484 4,485 6,140 26,109 571 1,326 2,321
MSP430 ASM 6,294 374 10,040 3,750 7,003 20,792 584 819 1,403
CortexM0+ ASM 5,672 496 8,270 4,838 15,262 28,369 716 496 693

ATmega ISE 7,600 526 10,040 4,485 7,039 21,564 664 500 754
MSP430 ISE 4,588 370 7,796 3,725 7,197 18,718 805 419 521
CortexM0+ ISE 3,352 492 6,416 4,812 18,700 29,929 1,330 334 251

secp256r1, NIST P-256

ATmega ASM 16,112 590 17,029 4,838 6,140 28,006 548 1,914 3,493
MSP430 ASM 8,378 418 11,878 4,000 7,003 22,881 580 1,286 2,217
CortexM0+ ASM 7,168 540 10,123 5,089 15,262 30,475 719 771 1,073

ATmega ISE 9,596 590 11,807 4,838 7,039 23,684 655 779 1,190
MSP430 ISE 6,168 416 10,040 3,975 7,197 21,212 791 717 907
CortexM0+ ISE 4,124 536 8,270 5,064 18,700 32,034 1,339 546 408

a Including Stack.

which in turn is faster than the 8-bit processor. Quite remarkably though is that
the modified ATmega is nearly as fast as the native Cortex-M0+.

Area. The area visualized in Figure 1 accumulates the respective areas of
the CPU, the ROM, the RAM, and core building blocks, such as an arbiter.
Quite remarkably, the native and the modified MSP430 represent the smallest
implementation, requiring around 16.8–18.0 kGE. Compared to that, the modi-
fied Cortex-M0+ (29 kGE) is 75 % larger.

Area-runtime-product. In the prestigious category of area-runtime-
product, the modified implementations clearly outperform its native counter-
parts (see the dashed lines within Figure 1). The modified Cortex-M0+ system
performs best, and the native ATmega system performs worst. However, the
modified ATmega system provides a better performance for the used chip area
than the native Cortex-M0+. Consequently, if some commercial company eval-
uates whether to switch to a more powerful Cortex-M0+, we can clearly recom-
mend to replace the native MSP430 or ATmega with its modified counterpart,
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Fig. 1. Area-runtime-characteristics for secp160r1 at 10 MHz.

presented within this paper. As nice side-effect, the software code-base does not
have to be updated for a different processor.

Power. According to Figure 2, all designs require between 545–1,305 µW.
The 8-bit ATmega requires the least amount of power, slightly less (6.5 %)
than the MSP430. However, when their modified counterparts are compared,
the modified ATmega needs 16 % less power than the modified MSP430. The
Cortex-M0+ and the modified Cortex-M0+ need the most power.

Power-runtime-product: Energy. However, the same two processors
shine within the energy-efficiency race. As represented by the dashed lines in
Figure 2, the Cortex-M0+ based designs only need 161–202 µJ, while the other
designs need 194–503 µJ. That is up to 60 % less. The MSP430 is 11–33 % more
energy efficient than the ATmega.

Relating the Different Elliptic Curves. As initially stated and depicted
in Table 4, we did not do our evaluation only with secp160r1, but also with
secp192r1, secp224r1, and secp256r1. Most importantly, the results observed
at the 80-bit security level are reproducible for the larger elliptic curves. On
average, changing from one elliptic curve to the next larger one, costs 6 % of
additional chip area, 53 % of additional runtime and 54 % of additional energy.
The power consumption is not effected by the chosen elliptic curve.

Related Work. In terms of software implementations (c.f. Table 5), our
implementations distinct themselves from related work with their low memory
footprints and the side-channel countermeasures. In fact none of the implemen-
tations done by [20, 22, 33, 42, 45] have side-channel countermeasures built in.
Therefore it is expected that, e.g., [20, 22, 42], achieve faster runtimes than we
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Fig. 2. Power-runtime-characteristics for secp160r1 at 10 MHz.

do. However, e.g., [20, 42] need up to 7–10 times more program and data memory
than we do.

For the sake of completeness, we also compare our modified processors with
related hardware implementations (c.f. Table 6). Unfortunately, those dedicated
hardware designs are faster than our flexible microprocessor based designs. How-
ever, in terms of chip area, our smallest modified MSP430 implementation is
smaller than the work of [17, 24, 29, 38, 39]. Only the custom microprocessor de-
sign by Wenger et al. [48] is smaller. However, their microprocessor does not come
with the vast (open-source) compiler toolchains, the ATmega, the MSP430, or
the Cortex-M0+ provide.

7 Conclusion

In this work, three of the most popular micro-processors were evaluated re-
garding their runtime, chip area, power, and energy consumption on standard-
compatible side-channel protected elliptic curve cryptography. By comparing
them using a single design flow, the same application, and with a common tech-
nology, we achieve a fair comparison between the different architectures. Our
work might help any system architect on their decision regarding best suitable
processor, best suitable security level, and whether or not to implement hard-
ware extensions. Our results show that the Cortex-M0+ is the fastest and most
energy-efficient processor (e.g., ideal for Wireless Sensor Nodes), the MSP430
enables the smallest and least power consuming hardware design (e.g., ideal for
RFID tags), and the ATmega gains the most performance when instruction-
set modifications are applied (e.g., ideal for long-lived products that must be
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Table 5. Comparison with related soft-
ware implementations (80 bit security
level).

Curve ROM RAM Runtime
[Bytes] [Bytes] [kCycles]

ATmega

Custom [42] 46,100 1,800 9,376
secp160r1 [33] 20,768 1,774 15,060
secp160r1 [22] 3,682 282 6,480
Our secp160r1 8,358 402 9,230

MSP430

Custom [42] 31,300 2,900 5,898
secp160r1 [20] 23,300 2,800 2,528
secp160r1 [33] 16,218 1,866 11,821
secp160r1 [45] 12,500 1,300 28,080
Our secp160r1 4,788 290 5,780

Table 6. Comparison with related hard-
ware implementations.

Implementation Area Runtime
[GE] [kCycles]

96-bit security level

Satoh et al. [39] 29,655 4,165
Hutter et al. [24] 19,115 859
Wenger et al. [48] 11,686 1,377

80-bit security level

Öztürk et al. [38] 30,333 545
Fürbass et al. [17] 23,656 500
Kern et al. [29] 18,247 512

Our Mod. ATmega 18,995 3,268
Our Mod. MSP430 16,786 2,446
Our Mod. Cortex-M0+ 29,450 1,232

equipped with ECC). Any designer now has to define their own metric and
weigh the characteristics with each other. To the best of our knowledge, such an
comprehensive evaluation has not been done before.
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14. P.-A. Fouque, R. Lercier, D. Réal, and F. Valette. Fault Attack onElliptic Curve
Montgomery Ladder Implementation. In FDTC. IEEE Computer Society, 2008.

15. Freescale Semiconductor. Kinetis L Series MCUs, 2013. Available online at http://
www.freescale.com/webapp/sps/site/taxonomy.jsp?code=KINETIS_L_SERIES.

16. Fujitsu Semiconductors. Fujitsu Semiconductor Widely Expands Lineup of 32-bit
General Purpose Microcontrollers with the Release of Products Adopting 2 New
ARM Cores, November 2012. Press Release.

17. F. Fürbass and J. Wolkerstorfer. ECC Processor with Low Die Size for RFID
Applications. In IEEE International Symposium on Circuits and Systems, 2007.

18. L. Goubin. A Refined Power-Analysis Attack on Elliptic Curve Cryptosystems. In
PKC, LNCS, 2003.
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A Analysis of Point Multiplication Formula

The following analysis discusses how Algorithm 1 holds up against the most
common side-channel attacks. It is based on the overview papers of Fan et al. [12,
13]. Attacks that are considered not to affect the security of the given algorithm:

Timing analysis [30] is not possible, because the used Montgomery Lad-
der [25] has a key-independent runtime, and all finite-field operations have
a constant runtime as well. To avoid leading-zero-bits timing attacks [6]
based on the LLL algorithm [32], we set the most-significant bit of the secret
ephemeral scalar to one.

Simple power analysis [31] is hindered by using a Montgomery Ladder and
Randomized Projective Coordinates.

Differential power analysis [31], Refined power analysis [18] are not pos-
sible as random ephemeral scalars are used for DHKE and ECDSA.

M & C safe-error analysis [28, 51] are not possible because a Montgomery
ladder in conjunction with random ephemeral scalars is used.

Invalid point analysis [5], Twist-curve based analysis [14] is not possi-
ble because in lines 1, 3, 10, and 12 point-validity checks are performed.

Subgroup analysis [5] is not possible because an y-recovery with subsequent
point verification is performed. Ebeid and Lambert [11] provide a thorough
analysis of the y-recovery as countermeasure.

Attacks that may affect the security of the given algorithm:

Program-flow fault analysis [40, 41]. A fault attack applied on the program
flow can hardly be detected by the program flow itself. To circumvent such
paths of attacks, hardware countermeasures are recommended.

Invalid-curve analysis [8] has to be additionally handled by checking the va-
lidity of the stored curve parameters. This is not done within Algorithm 1,
but the point-validity checks certainly handicap any invalid-curve attack.

Electromagnetic-emanation analysis [23] is possible if the attacker can de-
tect which memory locations are accessed at certain points in time. A coun-
termeasure would be to randomize the memory access patterns.


